一、前言
经过一段时间的积累,对于神经网络,已经基本掌握了感知器、BP算法及其改进、AdaLine等最为简单和基础的前馈型神经网络知识,下面开启的是基于反馈型的神经网络Hopfiled神经网络。前馈型神经网络通过引入隐层及非线性转移函数(激活函数)使得网络具有复杂的非线性映射能力。前馈网络的输出仅由当前输入和权矩阵决定,而与网络先前的输出状态无关。J.J. Hopfield教授在反馈神经网络中引入了能量函数的概念,使得反馈型神经网络运行稳定性的判断有了可靠依据,1985年Hopfield和Tank共同用模拟电子线路实现了Hopfield网,并成功的求解了优化组合问题中最具有代表性的旅行商TSP问题,从而开辟了神经网络用于智能信息处理的新途径。
前馈网络中,不论是离散还是连续,一般都不考虑输入和输出之间在时间上的滞后性,而只是表达两者间的映射关系,但在Hopfield网络中,需考虑输入输出间的延迟因素,因此需要通过微分方程或差分方程描述网络的动态数学模型。
神经网络的学习方式包括三种:监督学习、非监督学习、灌输式学习。对于Hopfield网络的权值不是经过反复学习获得的,而是按照一定的实现规则计算出来,在改变的是网络的状态,直到网络状态稳定时输出的就是问题的解。
Hopfield网络分为连续性和离散型,分别记为CHNN和DHNN。这里主要讲解DHNN。