关闭

codeforces 9D How many trees?(DP,注意状态表示方法)

标签: DP
688人阅读 评论(0) 收藏 举报
分类:

题目链接

分析:比较一下各种状态表示,

①dp[n][h] 若表示n个节点深度为h,需要枚举左右儿子的深度,则每次转移需要O(n*h^2),不够优; 

②若dp[n][h]表示n个节点深度大于等于h,转移时的条件是至少有一个儿子的深度大于等于h-1,发现转移略复杂,是:[“左儿子深度<h-1" * "右儿子深度>=h-1"]  +   [“左儿子深度>=h-1” * "右儿子深度<h-1"]  +  ["左儿子深度>=h-1" * "右儿子深度>=h-1"]  ,这三种情况的组合,深度小于h可以用“深度>=h” - "深度>=0" 代替 ,每次转移需要O(n) , 时间性能良好, 但编写略复杂;

③dp[n][h]表示n个节点深度小于等于h,此时答案为 dp[n][n] - dp[n][h-1] , 状态转移条件是两个儿子深度都小于等于h-1 , 只有一种情况,没次转移需要O(n) 

同过上面比较可知第三种表示方法,兼有时间复杂度和代码复杂度的优势。

附第三种方法的代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
LL dp[40][40];

LL DP(int n,int h){
    if(dp[n][h]>=0) return dp[n][h];
    if(h==0) return dp[n][h] = n<=0 ? 1 : 0;
    if(n==0) return dp[n][h] = h>=0 ? 1 : 0;
    dp[n][h] = 0;
    for(int k=1;k<=n;k++){
        dp[n][h] += DP(k-1,h-1)*DP(n-k,h-1);
    }
    return dp[n][h];
}

int main()
{
    memset(dp,-1,sizeof(dp));
    int n,h;
    while(cin>>n>>h) cout<<DP(n,n)-DP(n,h-1)<<endl;
    return 0;
}



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:56713次
    • 积分:1517
    • 等级:
    • 排名:千里之外
    • 原创:99篇
    • 转载:3篇
    • 译文:0篇
    • 评论:9条