正在学习“Learning Python 2nd Editon”

原创 2004年08月29日 18:50:00

虽然以前断断续续的学了一些python知识,但是以前的学习都不是很系统,而且由于没有什么相关的实践,很快就拉掉了。所以这次决定好好看看这本书——“Learning Python 2nd Editon”,一本不错的python入门书籍。

 

目前已经看到第二十二章的“Designing with Classes”,感觉还是比较顺利的,作者写得非常易懂,而且在容易出错的地方都会特别提醒读者注意。

 

不知道有没有其他人在读这本书,有的话可以好好交流交流。

 

现在唯一的遗憾就是暂时找不到什么实践活动来好好练习练习python编程。

学习Python和机器学习的几个不错网址

为了理解和应用机器学习技术,你需要学习 Python 或者 R。这两者都是与 C、Java、PHP 相类似的编程语言。但是,因为 Python 与 R 都比较年轻,而且更加“远离”CPU,所以它们显得...
  • laowu8615
  • laowu8615
  • 2017年03月15日 08:20
  • 1253

机器学习实战Machine Learning In Action 中的KNN代码详细解释

首先,是构造一个分类器函数classify0(),代码如下:def classify0(inX, groups, lables, key): dataSetSize = groups.sha...
  • u012815879
  • u012815879
  • 2016年05月16日 17:23
  • 436

强化学习(reinforcement learning)教程

正文: Q学习算法是一种用来解决马尔可夫决策过程中最优化问题的方法。Q学习算法最大的特点是它具有选择瞬时奖励和延迟奖励的能力。在每一步中,agent通过观察状态s的向量,然后选择并执行行动a,随着状...
  • ztf312
  • ztf312
  • 2015年10月22日 22:16
  • 2789

building machine learning system with Python 学习笔记--从零开始机器学习(1)搭建环境

搭建学习环境: Linux系统和Mac OS一般都自带了Python,在命令行直接输入Python即可调用: 可以看到我的Ubuntu是Python3.6版本,建议用与本书一致的Python2.7...
  • qq_25203493
  • qq_25203493
  • 2017年05月07日 16:39
  • 444

【重磅干货整理】机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总

《Brief History of Machine Learning》 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM、Adaboost到随机森林、Deep L...
  • zhongwen7710
  • zhongwen7710
  • 2015年04月28日 10:17
  • 16378

Spark (Python版) 零基础学习笔记(五)—— Spark RDDs编程

RDD基础概念创建RDD 创建RDD的方法: 1.载入外部数据集 2.分布一个对象的集合前边几次的笔记已经提到过多次了,因此,这里只列出几个注意事项: 1.利用sc.parallelize创建...
  • zhangyang10d
  • zhangyang10d
  • 2016年11月29日 11:39
  • 907

入门机器学习,看这些材料就够了

作者:chen_h 微信号 & QQ:862251340 微信公众号:coderpai 简书地址:http://www.jianshu.com/p/50844cc23086现在网上有很多的机器学...
  • CoderPai
  • CoderPai
  • 2017年12月14日 21:48
  • 166

Python个人学习笔记二

Python个人学习笔记二
  • bjtbjt
  • bjtbjt
  • 2014年09月11日 12:28
  • 2424

强化学习(Reinforcement Learning)知识整理

因为准备投入学习 CS294,具体见 知乎专栏,复习了下之前学习 Udacity 和 CS181 中有关强化学习部分的笔记和资料,再看了遍 David Silver 课程的 PPT,整理成了这篇文章。...
  • AMDS123
  • AMDS123
  • 2017年04月16日 20:31
  • 8196

Metric Learning度量学习:**矩阵学习和图学习

ML的两条主要路线,从样本中学习一个度量,或者使用样本训练一个网络。 一篇metric learning(DML)的综述文章,对DML的意义、方法论和经典论文做一个介绍,同时对我的研究经历和思考做一个...
  • wishchin
  • wishchin
  • 2016年05月18日 19:23
  • 2314
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:正在学习“Learning Python 2nd Editon”
举报原因:
原因补充:

(最多只允许输入30个字)