【第22期】观点:IT 行业加班,到底有没有价值?

MATLAB基础之矩阵相关的建立、基本操作

原创 2016年06月01日 18:36:39

MATLAB 基础之与矩阵相关的建立、基本操作的演示代码

1.  *与.*

    .*是矩阵与标量数据之间的操作运算例如A.*B  即 A(i,j)*B(i,j);

    *是矩阵之间的操作运算  A*B

2./与./

   a/b相当于a乘b的逆  A/B=A*inv(B);

    a./b是a的每个元素与b的每个元素对应相除A\B=inv(A)*B;

%%本程序主要介绍MATLAB中相关矩阵的建立、基本操作的演示代码%%
clear all;
clc;
A=[1 3 5;7 9 11;13 15 17];
B=[2 4 6;8 10 12;14 16 18];
C=[0 5 0 0;0 0 0 0;12 0 0 0;0 22 0 9];
b=3;
%%---------------------矩阵与标量b=3的操作----------------------------------
fprintf('矩阵与标量b=3的操作:\n');
fprintf('O1=A+b:\n');
O1=A+b;
disp(O1);
fprintf('O2=A*b:\n');
O2=A*b;
disp(O2);
fprintf('O3=A/b:\n');
O3=A/b;
disp(O3);
fprintf('O4=A.^b:\n');
O4=A.^b;
disp(O4);
%%-------------------------矩阵A与矩阵B的操作-------------------------------
fprintf('矩阵A与矩阵B的操作:\n');
fprintf('A=:\n')
disp(A)
fprintf('B=:\n')
disp(B);
fprintf('P1=A*B:\n');
P1=A*B;
disp(P1);
fprintf('P2=A.*B:\n');
P2=A.*B;
disp(P2);
fprintf('P3=A\\B:\n');
P3=A\B;
disp(P3);
fprintf('P4=A.\\B):\n');
P4=A.\B;
disp(P4);
fprintf('P5=A/B:\n');
P5=A/B;
disp(P5);
fprintf('P6=A./B:\n');
P6=A./B;
disp(P6);
fprintf('P7=A&B:\n');
P7=A&B;
disp(P7);
fprintf('P7=A|B:\n');
P8=A|B;
disp(P8);
%%----------------------------矩阵A的操作-----------------------------------
fprintf('矩阵A的操作:\n');
fprintf('A=:\n')
disp(A);
fprintf('B=:\n')
disp(B);
fprintf('选出矩阵前3行构成一个矩阵Q1=A(1:3,:):\n');
Q1=A(1:3,:);
disp(Q1);
fprintf('选出矩阵后两列构成一个矩阵Q2=A(:,2:3):\n');
Q2=A(:,2:3);
disp(Q2);
fprintf('矩阵A与矩阵B合并成一个矩阵Q3=[A;B]:\n')
Q3=[A;B];
disp(Q3);
fprintf('矩阵A与矩阵B合并成一个矩阵Q4=[A;B]:\n');
Q4=[A,B];
disp(Q4);
fprintf('矩阵A的转置矩阵 Q5=A'':\n');
Q5=A';
disp(Q5);
fprintf('矩阵A的对角元素 Q6=diag(A):\n');
Q6=diag(A);
disp(Q6);
fprintf('矩阵A的第b=3条对角元素 Q7=diag(A,b=3):\n');
Q7=diag(A,b);
disp(Q7);
fprintf('提取矩阵A的上三角矩阵 Q8=triu(A):\n');
Q8=triu(A);
disp(Q8);
fprintf('提取矩阵A的下三角矩阵 Q9=tril(A):\n');
Q9=tril(A);
disp(Q9);
fprintf('矩阵A的左右翻转 Q10=fliplr(A):\n');
Q10=fliplr(A);
disp(Q10);
fprintf('矩阵A的上下翻转 Q11=flipud(A):\n');
Q11=flipud(A);
disp(Q11);
%-------------------------稀疏矩阵C的操作-----------------------------------
fprintf('矩阵C的操作:\n');
fprintf('C=:\n')
disp(C);
fprintf('把矩阵A转化成稀疏矩阵R1=sparse(A):\n');
R1=sparse(C);
disp(R1);
fprintf('查看用[row,col,value]=find(R1)上述稀疏矩阵');
[row,col,value]=find(R1)
fprintf('将稀疏矩阵R1转化成完全矩阵,R2=full(R1):\n');
R2=full(R1);
disp(R2);
fprintf('生成m*n=4*4阶所有系数为0的稀疏矩阵,R3=sparse(4,4):\n');
R3=sparse(4,4);
disp(R3);
full(R3);
fprintf('生成m*n=4*4阶稀疏矩阵,只有对角线元素为1,R4=speye(4,4):\n');
R4=speye(4,4);
disp(R4);
full(R4);
fprintf('row=[1 2 3 4],col=[5 6 7 8],value=[9 10 11 12]建立的稀疏矩阵,只有对角线元素为1,R5=sparse(row,col,value):\n');
R5=sparse(row,col,value);
disp(R5);
full(R5);


版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

MATLAB学习笔记01——基本命令和矩阵

填写图片摘要(选填) matlab2016中的工具箱被命名为应用程序,英文名为app,在应用程序下有原版的各种常用工具箱。 工作空间常用命令: who;显示所有变量 ...

[Matlab]基础教程学习笔记(一):基础和设置和矩阵教程

一、Matlab设置函数。 path:显示搜索路径所包含的所有内容 cd:current direction 查看当前路径 %:添加注释 userpath:显示默认的路径。 示例:userp...

MATLAB基本矩阵函数和操作

eye 单位矩阵 zeros 全零矩阵 ones 全1矩阵 rand 均匀分布随机阵 genmarkov 生成随机Markov矩阵 linspace 线性等分向量 logspa...

MATLAB基本的使用方法(图像,矩阵及函数)

读取图像:用imread函数读取图像文件,文件格式可以是TIFF、JPEG、GIF、BMP、PNG等。比如      >> f = imread('chestxray.jpg');   读进来的...

matlab 矩阵基础运算

%基础运算 det >> a=[1,2,3;2,3,4;5,6,7] a =      1     2     3      2     3     4  ...

matlab基本语法和运算基础

matlab语法比较随意,但正如其全名 matrix &laboraty(矩阵实验室)所言,相比于其他语言,它可以非常便捷实现矩阵运算,就像我们标量的加减乘除一样简单。对于矩阵运算的强大支持和强大数学...

matlab矩阵基本操作

一 矩阵的生成 1、单位矩阵eye(n)生成n*n的单位矩阵eye(n,m)生成n*m的单位矩阵eye(size(B))生成与B同样大小的单位矩阵2、全1矩阵ones(n)ones(n,m)ones(...

Matlab学习笔记一:矩阵基础

矩阵的创建 1.直接输入法 >> a=[1 2 3;4 5 6] a =      1     2     3      4     5     6 >> b=[11,12,13;21,22,23] ...

MATLAB的变量、向量和矩阵的定义与赋值

MATLAB的基本知识点: 1. 变量的定义以及特殊标量的表示与含义 2. 行向量的定义与赋值 3. 矩阵的定义与赋值以及特殊矩阵的生成 每一个都有实例,并且都上机实践过的,能让为你打下很好的学习...

MATLAB中的矩阵建立

matlab矩阵常用指令   1 2 3 4 5 6 分步阅读 在学习《线性代数》时,常需要借助一些常用的矩阵指令,包括常用矩阵快速创建、矩阵元素提取等,请看下文。...
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)