MATLAB基础之矩阵相关的建立、基本操作

原创 2016年06月01日 18:36:39

MATLAB 基础之与矩阵相关的建立、基本操作的演示代码

1.  *与.*

    .*是矩阵与标量数据之间的操作运算例如A.*B  即 A(i,j)*B(i,j);

    *是矩阵之间的操作运算  A*B

2./与./

   a/b相当于a乘b的逆  A/B=A*inv(B);

    a./b是a的每个元素与b的每个元素对应相除A\B=inv(A)*B;

%%本程序主要介绍MATLAB中相关矩阵的建立、基本操作的演示代码%%
clear all;
clc;
A=[1 3 5;7 9 11;13 15 17];
B=[2 4 6;8 10 12;14 16 18];
C=[0 5 0 0;0 0 0 0;12 0 0 0;0 22 0 9];
b=3;
%%---------------------矩阵与标量b=3的操作----------------------------------
fprintf('矩阵与标量b=3的操作:\n');
fprintf('O1=A+b:\n');
O1=A+b;
disp(O1);
fprintf('O2=A*b:\n');
O2=A*b;
disp(O2);
fprintf('O3=A/b:\n');
O3=A/b;
disp(O3);
fprintf('O4=A.^b:\n');
O4=A.^b;
disp(O4);
%%-------------------------矩阵A与矩阵B的操作-------------------------------
fprintf('矩阵A与矩阵B的操作:\n');
fprintf('A=:\n')
disp(A)
fprintf('B=:\n')
disp(B);
fprintf('P1=A*B:\n');
P1=A*B;
disp(P1);
fprintf('P2=A.*B:\n');
P2=A.*B;
disp(P2);
fprintf('P3=A\\B:\n');
P3=A\B;
disp(P3);
fprintf('P4=A.\\B):\n');
P4=A.\B;
disp(P4);
fprintf('P5=A/B:\n');
P5=A/B;
disp(P5);
fprintf('P6=A./B:\n');
P6=A./B;
disp(P6);
fprintf('P7=A&B:\n');
P7=A&B;
disp(P7);
fprintf('P7=A|B:\n');
P8=A|B;
disp(P8);
%%----------------------------矩阵A的操作-----------------------------------
fprintf('矩阵A的操作:\n');
fprintf('A=:\n')
disp(A);
fprintf('B=:\n')
disp(B);
fprintf('选出矩阵前3行构成一个矩阵Q1=A(1:3,:):\n');
Q1=A(1:3,:);
disp(Q1);
fprintf('选出矩阵后两列构成一个矩阵Q2=A(:,2:3):\n');
Q2=A(:,2:3);
disp(Q2);
fprintf('矩阵A与矩阵B合并成一个矩阵Q3=[A;B]:\n')
Q3=[A;B];
disp(Q3);
fprintf('矩阵A与矩阵B合并成一个矩阵Q4=[A;B]:\n');
Q4=[A,B];
disp(Q4);
fprintf('矩阵A的转置矩阵 Q5=A'':\n');
Q5=A';
disp(Q5);
fprintf('矩阵A的对角元素 Q6=diag(A):\n');
Q6=diag(A);
disp(Q6);
fprintf('矩阵A的第b=3条对角元素 Q7=diag(A,b=3):\n');
Q7=diag(A,b);
disp(Q7);
fprintf('提取矩阵A的上三角矩阵 Q8=triu(A):\n');
Q8=triu(A);
disp(Q8);
fprintf('提取矩阵A的下三角矩阵 Q9=tril(A):\n');
Q9=tril(A);
disp(Q9);
fprintf('矩阵A的左右翻转 Q10=fliplr(A):\n');
Q10=fliplr(A);
disp(Q10);
fprintf('矩阵A的上下翻转 Q11=flipud(A):\n');
Q11=flipud(A);
disp(Q11);
%-------------------------稀疏矩阵C的操作-----------------------------------
fprintf('矩阵C的操作:\n');
fprintf('C=:\n')
disp(C);
fprintf('把矩阵A转化成稀疏矩阵R1=sparse(A):\n');
R1=sparse(C);
disp(R1);
fprintf('查看用[row,col,value]=find(R1)上述稀疏矩阵');
[row,col,value]=find(R1)
fprintf('将稀疏矩阵R1转化成完全矩阵,R2=full(R1):\n');
R2=full(R1);
disp(R2);
fprintf('生成m*n=4*4阶所有系数为0的稀疏矩阵,R3=sparse(4,4):\n');
R3=sparse(4,4);
disp(R3);
full(R3);
fprintf('生成m*n=4*4阶稀疏矩阵,只有对角线元素为1,R4=speye(4,4):\n');
R4=speye(4,4);
disp(R4);
full(R4);
fprintf('row=[1 2 3 4],col=[5 6 7 8],value=[9 10 11 12]建立的稀疏矩阵,只有对角线元素为1,R5=sparse(row,col,value):\n');
R5=sparse(row,col,value);
disp(R5);
full(R5);


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Matlab矩阵基本操作(定义,运算)

转载自 一、矩阵的表示 在MATLAB中创建矩阵有以下规则: a、矩阵元素必须在”[ ]”内; b、矩阵的同行元素之间用空格(或”,”)隔开; c、矩阵的行与行之间用”;”(...

matlab矩阵的基本操作

一、创建矩阵 首先,我们需要学会创建矩阵,方法如下 1、一般矩阵 a=[2 3 5 2;6 3 4 5;2 5 6 3;3 5 7 8] 说明:a为矩阵名;矩阵内容用 “ [ ] ” ...

Matlab矩阵基本操作(定义,运算)

一、矩阵的表示 在MATLAB中创建矩阵有以下规则: a、矩阵元素必须在”[ ]”内; b、矩阵的同行元素之间用空格(或”,”)隔开; c、矩阵的行与行之间用”;”(或回车符)隔开...

Matlab中矩阵的基本操作

(一)矩阵的基本操作 1、 生成一个3×3的矩阵A,它的元素为你任意指定的9个不同的正整数,计算A的行列式并将其赋值给变量b,若b0,求出矩阵B=。若b=0,重新选择A。 将所生成的矩阵A及B连在...

Matlab向量/矩阵基本操作

1、向量的创建 1)直接输入: 行向量:a=[1,2,3,4,5] 列向量:a=[1;2;3;4;5]        2)用“:”生成向量      ...

一步一步复习数据结构和算法基础-图的创建和基本操作(邻接矩阵)

邻接矩阵写起来还是比较简单的。。。。。。 #include #include #include #define number 20 typedef struct node { int info; ...

TensorFlow基础知识点(六)/矩阵基本操作

import tensorflow as tf# 1.1矩阵操作 sess = tf.InteractiveSession() x = tf.ones([2, 3], "float32") print...

matlab入门教程二 ----- 常用函数&矩阵基本操作&&数组基本操作

1.常用计算函数 2.矩阵操作 (1)基本操作 A = [1, 2, 3; 4, 5 ,6]; % 赋值 用分号隔开每一行,同一行中的元素用逗号或者空格隔开 A %A(i,j) 表示矩阵 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)