二叉树的先序遍历,中序遍历,后序遍历

原创 2015年11月18日 16:03:57
//此代码是数据结构的原始模板,可以刚接触或考研时借鉴下,不适于刷题
#include<malloc.h> // malloc()等
 #include<stdio.h> // 标准输入输出头文件,包括EOF(=^Z或F6),NULL等
 #include<stdlib.h> // atoi(),exit()
 #include<math.h> // 数学函数头文件,包括floor(),ceil(),abs()等


#define ClearBiTree DestroyBiTree // 清空二叉树和销毁二叉树的操作一样

typedef struct BiTNode
 { 
 int data; // 结点的值
    BiTNode *lchild,*rchild; // 左右孩子指针
 }BiTNode,*BiTree;

int Nil=0; // 设整型以0为空
void visit(int e)
 { printf("%d ",e); // 以整型格式输出
 }
 void InitBiTree(BiTree &T)
 { // 操作结果:构造空二叉树T
   T=NULL;
 }

 void CreateBiTree(BiTree &T)
 { // 算法6.4:按先序次序输入二叉树中结点的值(可为字符型或整型,在主程中定义),
   // 构造二叉链表表示的二叉树T。变量Nil表示空(子)树。修改
   int number;
   scanf("%d",&number); // 输入结点的值
   if(number==Nil) // 结点的值为空
     T=NULL;
   else // 结点的值不为空
   { T=(BiTree)malloc(sizeof(BiTNode)); // 生成根结点
     if(!T)
       exit(OVERFLOW);
     T->data=number; // 将值赋给T所指结点
     CreateBiTree(T->lchild); // 递归构造左子树
     CreateBiTree(T->rchild); // 递归构造右子树
   }
 }

 void DestroyBiTree(BiTree &T)
 { // 初始条件:二叉树T存在。操作结果:销毁二叉树T
   if(T) // 非空树
   { DestroyBiTree(T->lchild); // 递归销毁左子树,如无左子树,则不执行任何操作
     DestroyBiTree(T->rchild); // 递归销毁右子树,如无右子树,则不执行任何操作
     free(T); // 释放根结点
     T=NULL; // 空指针赋0
   }
 }

 void PreOrderTraverse(BiTree T,void(*Visit)(int))
 { // 初始条件:二叉树T存在,Visit是对结点操作的应用函数。修改算法6.1
   // 操作结果:先序递归遍历T,对每个结点调用函数Visit一次且仅一次
   if(T) // T不空
   { Visit(T->data); // 先访问根结点
     PreOrderTraverse(T->lchild,Visit); // 再先序遍历左子树
     PreOrderTraverse(T->rchild,Visit); // 最后先序遍历右子树
   }
 }

 void InOrderTraverse(BiTree T,void(*Visit)(int))
 { // 初始条件:二叉树T存在,Visit是对结点操作的应用函数
   // 操作结果:中序递归遍历T,对每个结点调用函数Visit一次且仅一次
   if(T)
   { InOrderTraverse(T->lchild,Visit); // 先中序遍历左子树
     Visit(T->data); // 再访问根结点
     InOrderTraverse(T->rchild,Visit); // 最后中序遍历右子树
   }
 }

  void PostOrderTraverse(BiTree T,void(*Visit)(int))
 { // 初始条件:二叉树T存在,Visit是对结点操作的应用函数
   // 操作结果:后序递归遍历T,对每个结点调用函数Visit一次且仅一次
   if(T) // T不空
   { PostOrderTraverse(T->lchild,Visit); // 先后序遍历左子树
     PostOrderTraverse(T->rchild,Visit); // 再后序遍历右子树
     Visit(T->data); // 最后访问根结点
   }
 }

 void main()
 {
   BiTree T;
   InitBiTree(T); // 初始化二叉树T
   printf("按先序次序输入二叉树中结点的值,输入0表示节点为空,输入范例:1 2 0 0 3 0 0\n");
   CreateBiTree(T); // 建立二叉树T
   printf("先序递归遍历二叉树:\n");
   PreOrderTraverse(T,visit); // 先序递归遍历二叉树T
   printf("\n中序递归遍历二叉树:\n");
   InOrderTraverse(T,visit); // 中序递归遍历二叉树T
   printf("\n后序递归遍历二叉树:\n");
   PostOrderTraverse(T,visit); // 后序递归遍历二叉树T
 }
按先序次序输入二叉树中节点中的值,输入0表示节点为空,输入范例:1 2 0 0 3 0 0 
1 2 4 6 0 0 7 0 8 9 0 0 10 0 0 5 0 0 3 0 0 
先序递归遍历二叉树:1 2 4  6 7 8 9 10 5 3
中序递归遍历二叉树:6 4 7 9 8 10 2 5 1 3 
后序递归遍历二叉树:6 9 10 8 7 4 5 2 3 1 
二叉树是非线性数据结构,通过遍历可以将二叉树中的节点访问一次且仅一次,从而得到访问节点的顺序序列,目的是在于将非线
性结构变成线性化的访问序列。
先序遍历:(1)访问根节点;(2)按先序遍历左子树;(3)按先序遍历右子树
中序遍历:(1)按中序遍历左子树;(2)访问根节点;(3)按中序遍历右子树
后序遍历:(1)按后序遍历左子树;(2)按后序遍历右子树;(3)访问根节点


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

算法:二叉树的先序遍历、中序遍历、后序遍历(递归及非递归方式)的java代码实现

首先来看一棵二叉树: 1、前序遍历: 前序遍历首先访问根结点然后遍历左子树,最后遍历右子树。在遍历左、右子树时,仍然先访问根结点,然后遍历左子树,最后遍历右子树...

中序遍历和先序遍历/后序遍历构建二叉树

给定二叉树的2个遍历序列(如先序+中序,先序+后序,中序+后序等),是否能够根据这2个遍历序列唯一确定二叉树? struct BinaryTreeNode { int m_nValue; Bina...

二叉树的先序遍历、中序遍历以及后序遍历(递归以及非递归方式)

二叉树的遍历方式有两种:一种是比较简单的递归方式,另一种是借助栈实现的循环方式 1.先序遍历 a.先访问根节点 b.先序遍历左子树 c.先序遍历右子树 对应的递归算法: public void p...

二叉树的遍历代码(先序遍历,中序遍历,后序遍历)

二叉树遍历主要有三种,分为前序遍历,中序遍历,后序遍历。 先序遍历: (1)先访问跟节点 (2)再先序访问左子树(递归) (3)再先序访问右子树(递归)中序遍历: (1)中序遍历左子树 ...

java实现二叉树已知先序遍历和中序遍历求后序遍历

分三步走 (1)确定树的根节点。树根是当前树中所有元素在先序遍历中最先出现的元素,即先序遍历的第一个结点就是二叉树的跟 (2)求解树的子树。找到根在中序遍历的位置,位置左边就是二叉树的左孩子,位置...

二叉树根据先序遍历和中序遍历,得到后序遍历

二叉树根据先序遍历和中序遍历,得到后序遍历 对于二叉树的先序遍历和中序遍历,由于在先序遍历中第一个访问的总是根节点,因此可以根据先序遍历中的第一个元素,将中序遍历看成是**“左子树中序遍历+根节点+右...

java实现二叉树的先序遍历,中序遍历,后序遍历

import java.util.Stack; //二叉树的节点结构 class TreeNode { int Id=0; String data=null; boolean isVisted=...

数据结构--二叉树的创建、先序遍历、中序遍历、后序遍历、深度、叶子结点数

*用cin来读取char类型时,没法读入“ ”(space),所以要改用getchar()(在头文件#include #include #include using namespace std; ty...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:二叉树的先序遍历,中序遍历,后序遍历
举报原因:
原因补充:

(最多只允许输入30个字)