求数组中最长递增子序列

博客探讨了如何使用动态规划算法求解数组中最长递增子序列的问题,详细介绍了算法思路和实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 
 
 
求数组中最长递增子序列
写一个时间复杂度尽可能低的程序,求一个一维数组(N个元素)中的最长递增子序列的长度。例如:在序列1-12-34-56-7中,其最长的递增子序列为1246。最长递增子序列Lis的长度是4 求一维数组中的最长递增子序列,也就是找一个标号的序列b[0],b[1],,b[m](0 <= b[0] < b[1] < … < b[m] < N),使得array[b[0]]<array[b[1]]<<array[b[m]] 真正求Lis是有难度的,对于每一个长度都要保存一个Lis数组,而且长度还有相同的,这不仅仅是一个二维数组能够解决的,即便是求出Lis的长度,也难以求出了Lis。所以退而求其次先来求Lis的长度。 OK,那如何求得Lis的长度呢?看看这个数组有啥性质,最优子结构,是的。整个数组的最优解包含除了-7之外的子数组的最优解。看起来好像可以用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值