二分图最大匹配问题与匈牙利算法的核心思想

最近在学习图论相关知识,读到二分图最大匹配问题的匈牙利算法,感觉很有意思,所以记录下来。

概念

在假设读者已经了解图论最最基本的概念的基础上(例如:顶点、边、路径、圈),我们先来看一下二分图特有的概念定义。

二分图(Bigraph, Bipartite graph)是一种特殊的图,它的顶点可以被分成两个不相交的集合( U U 和  V V),并且同属一个集合内的点两两不相连( EU=EV= EU=EV=∅)。这也就是说,如果一个图是二分图,那么它要么没有圈,要么圈所包含的边的数量必定是偶数。

Fig. 1 是一个简单的二分图

为了方便观看我们通常将它画为 Fig. 2 的形式:

匹配(Matching)是边的集合( ME M⊂E),其中任意两条边不共点( e1,e2M s.t. e1e2= ∀e1,e2∈M s.t. e1∩e2=∅)。Fig. 3 中标红的边组成的集合,就是一个匹配。这些标红的边,被称为匹配边;匹配边所连接的点则被称为匹配点。同理可以定义非匹配边非匹配点的概念。

显而易见,对于一个二分图来说,可能有很多种匹配。如果二分图里的某一个匹配包含的边的数量,在该二分图的所有匹配中最大,那么这个匹配称为最大匹配(Maximum Matching)。Fig. 4 是最大匹配的示例。

在二分图的匹配中,如果一条路径的首尾是非匹配点,路径中除此之外(如果有)其他的点均是匹配点,那么这条路径就是一条增广路径(Agumenting path)。Fig. 5 中,粗红线标出的是匹配路径和匹配点。

显而易见,8->4->7->1->5->2 是一条增广路径。因为 8 和 2 作为路径的首尾是非匹配点,而路径中剩余的 4/7/1/5 均是匹配点。

匈牙利算法

增广路径的首尾是非匹配点。因此,增广路径的第一条和最后一条边,必然是非匹配边;同时它的第二条边(如果有)和倒数第二条边(如果有),必然是匹配边;以及第三条边(如果有)和倒数第三条边(如果有),一定是非匹配边。

亦即,增广路径从非匹配边开始,匹配边和非匹配边依次交替,最后由非匹配边结束。这样一来,增广路径中非匹配边的数目会比匹配边大 1。

如果我们置换增广路径中的匹配边和非匹配边,由于增广路径的首尾是非匹配点,其余则是匹配点,这样的置换不会影响原匹配中其他的匹配边和匹配点,因而不会破坏匹配;亦即增广路径的置换,可以得到比原有匹配更大的匹配(具体来说,匹配的边数增加了 1)。

由于二分图的最大匹配必然存在(比如,上限是包含所有顶点的完全匹配),所以,再任意匹配的基础上,如果我们有办法不断地搜寻出增广路径,直到最终我们找不到新的增广路径为止,我们就有可能得到二分图的一个最大匹配。这就是匈牙利算法的核心思想。

唯一的问题在于,在这种贪心的思路下,我们如何保证不存在例外的情况,即:当前匹配不是二分图的最大匹配,但已找不到一条新的增广路径。

我们从反证法考虑,即假设存在这样的情况。因为当前匹配不是二分图的最大匹配,那么在两个集合中,分别至少存在一个非匹配点。那么情况分为两种:

  1. 这两个点之间存在一条边——那么我们找到了一条新的增广路径,产生矛盾;
  2. 这两个点之间不存在直接的边,即这两个点分别都只与匹配点相连——那么:
    1. 如果这两个点可以用已有的匹配点相连,那么我们找到了一条新的增广路径,产生矛盾;
    2. 如果这两个点无法用已有的匹配点相连,那么这两个点也就无法增加匹配中边的数量,也就是我们已经找到了二分图的最大匹配,产生矛盾。

在所有可能的情况,上述假设都会产生矛盾。因此假设不成立,亦即贪心算法必然能求得最大匹配的解。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
匈牙利算法是用于求解二分图最大匹配的经典算法之一。它的基本思想是通过不断增广路径来寻找最大匹配。 首先,我们需要明确什么是二分图匹配二分图是指顶点可以分为两个互斥的集合,并且边只存在于不同集合之间的图。而匹配则是指图中的一种边的选择,使得任意两条边都没有公共顶点。 下面是匈牙利算法的基本步骤: 1. 初始化一个空的匹配集合,如一个空的字典或数组; 2. 对于左侧的每个顶点,尝试找到一个增广路径来扩展当前的匹配。增广路径可以通过深度优先搜索(DFS)来寻找; 3. 如果找到了增广路径,就将当前路径上的边添加到匹配集合中; 4. 重复步骤 2 和步骤 3,直到无法找到增广路径为止。 匈牙利算法的关键在于如何寻找增广路径。一种常见的方法是使用DFS来搜索增广路径。具体步骤如下: 1. 从左侧的一个未匹配顶点开始,进行DFS搜索; 2. 对于当前顶点,依次遍历与之相连的右侧顶点; 3. 如果右侧顶点未匹配,或者可以通过其他未访问的左侧顶点找到增广路径,就将当前右侧顶点与左侧顶点进行匹配,并返回成功; 4. 如果右侧顶点已经匹配,并且可以通过其他未访问的左侧顶点找到增广路径,就尝试将当前右侧顶点与其匹配的左侧顶点进行DFS搜索; 5. 如果无法找到增广路径,返回失败。 通过不断地寻找增广路径并扩展匹配集合,直到无法找到增广路径为止,最终得到的匹配集合就是二分图最大匹配。 需要注意的是,匈牙利算法的时间复杂度为O(VE),其中V表示二分图中左侧顶点的数量,E表示边的数量。 希望能够帮到你!如有更多问题,请继续提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值