Editorial Divide by Zero and Codeforces Round #399 (Div. 1+2, combined) (A~F)

原创 2017年02月22日 22:46:21

CF #399

A题:水题

代码:

#include<bits/stdc++.h>
using namespace std;
int a[100010];

int main()
{
	int n;
	cin>>n;
	for(int i=0;i<n;i++){
		cin>>a[i];
		//s.insert(a);
	}
	int ans=0;
	if(n<=2)return 0*printf("%d",0);
	sort(a,a+n);
	for(int i=1;i<n-1;i++){
		if(a[i]>a[0]&&a[i]<a[n-1]){
		 ans++;
		}
	}
	cout<<ans<<endl;
	return 0;
}

B题:二分。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll ans;
void solve(ll a,ll b,ll l, ll r, ll d)
{
	if(a > b || l > r) return;
	else{
		ll mid=(a+b)/2;
		if(r < mid)solve(a,mid-1,l,r,d/2);
		else if(mid < l)solve(mid+1,b,l,r,d/2);
		else{
			ans += d%2;
			solve(a,mid-1,l,mid-1,d/2);
			solve(mid+1,b,mid+1,r,d/2);
		}
	}
}
int main()
{
	ll n,l,r,sum=1;
	cin>>n>>l>>r;
	ll t=n;
	while(t>=2)
	{
		t/=2;
		sum=sum*2+1;
	}
	solve(1,sum,l,r,n);
	cout<<ans<<endl;
	return 0;
}

C题:模拟,经过若干个操作后其序列会稳定不变。

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+10;
int a[maxn];
int L[maxn],S[maxn];
int main()
{
	int n,k,x;
	cin>>n>>k>>x;
	for(int i=0;i<n;i++)cin>>a[i];
	sort(a,a+n);
	for(int i=0;i<k;i++){
		for(int j=0;j<n;j++){
			if(j%2==0)
			a[j]=a[j]^x;
		}
		sort(a,a+n);
		S[i]=a[0];
		L[i]=a[n-1];
		//经过若干轮操作就会稳定 
		if(i>=2)
		if(S[i]==S[i-1]&&S[i]==S[i-2]&&L[i]==L[i-1]&&L[i]==L[i-2])
		break;
		
	}
	cout<<a[n-1]<<" "<<a[0]<<endl;
	return 0;
}
/*
5 1 2
9 7 11 15 5

13 7
*/


D题:概率DP。

总共有k种物品,每天产生一种物品(等概率)。问至少需要几天才能保证收集齐K种物品的概率超过(p - 1e-7)/2000。

设dp [ i ][ j ] 表示前 i 天总共得到了 j 种物品的概率。

那么转移方程为:dp[i][j]=(dp[i-1][j] * j + dp[i-1][j-1] * (k-j+1))/k

详细看代码。

代码:

#include<bits/stdc++.h>
using namespace std;
double dp[10005][1005];
//总共有k种物品,每天产生一种物品(等概率)。
//问至少需要几天才能保证收集齐K种物品的概率超过(p - 1e-7)/2000
int main()
{
	int k,q;
	cin>>k>>q;
	dp[0][0]=1.;
	for(int i=1;i<=10000;i++){
		for(int j=1;j<=k;j++)
		//dp[i][j] 表示前i天总共得到了j种物品的概率
		dp[i][j]=(dp[i-1][j] * j + dp[i-1][j-1] * (k-j+1))/k;
	}
	int p;
	while(q--){
		cin>>p;
		int i=1;
		int ans=0;
		while(dp[i][k]*2000 + 1e-7 < p )
		{
			i++;
		}
		cout<<i<<endl;	
	}
	return 0;
}
/*
3 5
1
4
20
50
300

3
3
3
3
3
*/


E题:Nim博弈。

代码:

#include<bits/stdc++.h>
using namespace std;
int sg[100010];
int main()
{
	int n;
	int st=0;
	cin>>n;
	for(int i=1;i<=100;i++){
		for(int j=1;j<=i+1;j++){
			sg[++st]=i;//状态数:1+2+3+...+n=n(n+1)/2 
		}
	}
	int ans=0;
	while(n--){
		cin>>st;//1<=st<=60
		ans^=sg[st];
	}
	if(ans==0)cout<<"YES"<<endl;
	else cout<<"NO"<<endl;
	return 0;
}


F题:组合数学+费马小定理+逆元

详细看代码。

官方题解:

Every arrangement of stacks can expressed in the form of linear arrangement. In this linear arrangement, every contiguous segment of wine barrels are separated by food boxes. For the arrangement to be liked by Jon each of the f + 1 partitions created by f food boxes must contain either 0 or greater than h wine barrels.

Let u out of f + 1 partitions have non-zero wine barrels then the remaining r + 1 - u partitions must have 0 wine barrels..

Total number of arrangements with exactly u stacks of wine barrels are  
 is the number of ways of choosing u partitions out of f + 1 partitions. 
X is the number of ways to place w wine barrels in these u partitions which is equal to the coefficient of xw in {xh + 1·(1 + x + ...)}u. Finally we sum it up for all u from 1 to f + 1.

So the time complexity becomes O(w) with pre-processing of factorials. 

w = 0 was the corner case for which the answer was 1
We did not anticipate it will cause so much trouble. Not placing it in the pretests was a rookie mistake.


代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e5+10;
const int mod=1e9+7;
ll fac[maxn],inv[maxn];
ll q_mod(ll a,ll n)
{
	ll res=1;
	while(n){
		if(n&1)res=res*a%mod;
		n>>=1;
		a=a*a%mod;	
	}
	return res;
}
ll C(ll n,ll m)//C(n,m)
{
	if(n<m)return 0;
	return fac[n]*inv[m] % mod * inv[n-m] %mod;
}
int main()
{
	 
	fac[0]=1;
	for(int i=1;i<maxn;i++) fac[i]=fac[i-1]*i%mod;
	
	inv[maxn-1]=q_mod(fac[maxn-1],mod-2);
	
	for(int i=maxn-2;i>=0;--i){
		inv[i]=inv[i+1]*(i+1)%mod;
	}
	ll f,w,h;
	cin>>f>>w>>h;
	if(w==0)return 0*puts("1");//特判... 
	ll a=0,b=0;
	for(int i=1;i<=w;i++){ 
		b=(b + C(w-1-i*h,i-1) * C(f+1,i) )%mod;//符合要求的情况
		a=(a + C(w-1,i-1) * C(f+1,i) )%mod;//全部情况 
	}	
	//cout<<b<<endl;
	//cout<<a<<endl;
	// 概率为:b/a
	cout<<b * q_mod(a,mod-2)%mod<<endl;
	return 0;
}

G题:。。。

不会。。。

不会。。。

不会。。。




版权声明:如果发现错误或者其他什么不足之处。请留言。博主尽量回复!转载要注明出处哦!

Divide by Zero 2017 and Codeforces Round #399 (Div. 1 + Div. 2, combined)

这把比赛题目不错,然而打得太挫了。。来写一发题解C. Jon Snow and his Favourite Number基本上是暴力模拟,不过排序和异或要写O(1000)O(1000)的。#inclu...

Codeforces Round #397 by Kaspersky Lab and Barcelona Bootcamp (Div. 1 + Div. 2 combined)

A. Neverending competitionstime limit per test:2 secondsmemory limit per test:512 megabytesinput:sta...

Codecraft-17 and Codeforces Round #391 (Div. 1 + Div. 2, combined) -- B. Bash's Big Day (唯一分解定理)

大体题意: 给你n 个数,让你选出尽可能多的数来,使得gcd(x1,x2,x3,,,xn) != 1; 输出最大数量? 思路: 思路比较偏比较麻烦,参考一下把! gcd不是1的话,说明它们有共...

Codecraft-17 and Codeforces Round #391 (Div. 1 + Div. 2, combined) C. Felicity is Coming!组合学+集合

题意:给出n组数,每组gi个数,每个数属于1~m,每个数可以变化但变化前相同的数变化后依然相同,变化前不同的速变化后依然不同,且可能不变,但经过变化后每组的每种数的个数不会变化,求变化的总方案数。 组...

ICM Technex 2017 and Codeforces Round #400 (Div. 1 + Div. 2, combined)A. A Serial Killer(水题)

题目: A. A Serial Killer time limit per test 2 seconds memory limit per test 256 mega...

ICM Technex 2017 and Codeforces Round #400 (Div. 1 + Div. 2, combined)A+B

A. A Serial Killertime limit per test:2 secondsmemory limit per test:256 megabytesinput:standard inp...

ICM Technex 2017 and Codeforces Round #400 (Div. 1 + Div. 2, combined) 题解(A-E)

A A Serial Killer#include using namespace std; #define For(i,n) for(int i=1;i

ICM Technex 2017 and Codeforces Round #400 (Div. 1 + Div. 2, combined) E. The Holmes Children

E. The Holmes Children time limit per test 2 seconds memory limit per test 256 megabytes...

Codecraft-17 and Codeforces Round #391 (Div. 1 + Div. 2, combined) B. Bash's Big Day 数论+贪心

题意:给出n个数,选出尽可能多的数,使这些数的gcd不是1. 数论+贪心 选出尽可能多的数,使这些数的gcd不是1.,则它们的gcd是x,x >= 2, 所以可以枚举gcd的值,从2到1e5,然后枚举...

Codecraft-17 and Codeforces Round #391 (Div. 1 + Div. 2, combined) -- C. Felicity is Coming! (STL水过)

大体题意: 有n 个体育馆每个体育馆里有 不同的精灵同样数字的精灵进化的结果是一样的不同数字进化的结果一定不同有多少个不同的进化方法使得每个体育馆进化后 和原来一样? 思路: 两个精灵可以互...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Editorial Divide by Zero and Codeforces Round #399 (Div. 1+2, combined) (A~F)
举报原因:
原因补充:

(最多只允许输入30个字)