关闭

老师给我的指点——深刻剖析了我

今天上午找导师有事,导师坐下来和我聊了聊。 他说,就他的观察,我有以下几个方面的问题。 一、感觉我在做事上总是欠缺那么一点东西。 就是说,给我的事情,我是能做完也让别人没法批评我,但是总感觉欠缺一点东西,相比师妹,每次给任务1分可以做完1.2分,而我每次都是0.8分。 虽然无可厚非,但是总感觉少点什么。他说,以我这样的方式,以后去工作单位了,领导虽然也不会讲我什么,但是如果...
阅读(18) 评论(0)

pandas绘图方法

一、最简单的方法df = get_price('002340.XSHE', start_date='2017-1-1', end_date='2017-10-11', frequency='daily', fields=None, skip_paused=False, fq='pre', count=None) df['close'].plot()...
阅读(12) 评论(0)

学不下去时坚持的方法

长久以来,我一直徘徊在想要学习+++++,结果学了++就不行了,学不下去的状态。 虽然,应该比以前还是厉害了些至少可以+++了,但是也不稳定。 一般如果周六日玩两天,周一周二效率会非常高。 但是周三、周四就越来越低。 我想了很多办法,尝试了很多,知乎上看了类似问题许多人的回答,全失败了。 最近发现有个方法,有效期能维持1~2天。 ...
阅读(20) 评论(0)

用Python解线性方程组——Scipy包和自己写

用Python解决方程组、微积分等问题,主要是用到Python的一个库——SymPy库。可以说这个项目也主要是学习SymPy库的用法。解二元一次方程功能实现解方程的功能主要是使用Sympy中solve函数实现。示例题目是: 方程表示代码表示与手写还是有区别的,下面列出常用的: 加号 + 减号 - 除号 / 乘号 * 指数 ** 对数 log() e的指数次幂 exp()题目中表达式可...
阅读(55) 评论(0)

Python如何忽略警告

有时候用pandas包,对df表作处理时,常常会伴随着警告出现,非常的不美观,因此可以如下处理:在代码里加入这两行,就可以不再出现警告了。import warnings warnings.filterwarnings("ignore")大功告成!...
阅读(34) 评论(0)

线性代数教程之二——特征分解

如果说一个向量v是方阵A的特征向量,将一定可以表示成下面的形式: λ为特征向量 v 对应的特征值。特征值分解是将一个矩阵分解为如下形式: 其中,Q是这个矩阵A的特征向量组成的矩阵,Σ是一个对角矩阵,每一个对角线元素就是一个特征值,里面的特征值是由大到小排列的,这些特征值所对应的特征向量就是描述这个矩阵变化方向(从主要的变化到次要的变化排列)。也就是说矩阵A的信息可以由其特征值和特征向量表示。对于...
阅读(34) 评论(0)

找工作这几个月

2017-10-11 星期三宣讲会 湖南大学 2017-10-11(周三) 15:00 广发银行 湖南大学 复临舍201 2017-10-12(周四) 15:00-17:00 招联消费金融 湖南大学 复临舍308(更新) 2017-10-16(周一) 19:00 国信证券 湖南大学 东楼311 2017-10-17(周二) 15:30 深圳证券信息 湖南大学 复临舍207中南大学 201...
阅读(23) 评论(0)

线性代数教程之一——矩阵乘法计算、理解及代码实现

参考了《深度学习》巨作,以下是矩阵篇的目录。 1 乘法设矩阵A为m×n矩阵,B为n×p矩阵,则它们的乘法公式为: 相关代码实现:# 矩阵滴乘法运算 # 注意:需要传入np.matrix类型数据 def Matrix_Mul(a,b): if a.shape[1] != b.shape[0]: print('这两个矩阵无法做乘法,请检查左边矩阵的列数是否与右边矩阵的行数相等...
阅读(44) 评论(0)

Python绘图问题:Matplotlib中柱状图bar使用

matplotlib.pyplot.bar(left, height, alpha=1, width=0.8, color=, edgecolor=, label=, lw=3) Make a bar plot,绘制柱状图。参数: 1. left:x轴的位置序列,一般采用arange函数产生一个序列; 2. height:y轴的数值序列,也就是柱形图的高度,一般就是我们需要展示的数据; 3....
阅读(40) 评论(0)

Python绘图问题:Matplotlib中rcParams使用

主要作用为指定图片像素: matplotlib.rcParams[‘figure.figsize’]#图片像素 matplotlib.rcParams[‘savefig.dpi’]#分辨率 plt.savefig(‘plot123_2.png’, dpi=200)#指定分辨率 %matplotlib inline import matplotlib # 注意这个也要import一次...
阅读(40) 评论(0)

Python绘图问题:IPython.core.pylabtools的figsize

先看官方文档:IPython.core.pylabtools.figsize(sizex, sizey) Set the default figure size to be [sizex, sizey].This is just an easy to remember, convenience wrapper that sets: matplotlib.rcParams[‘figure.fig...
阅读(29) 评论(0)

Python绘图问题:Matplotlib中%matplotlib inline是什么、如何使用?

%matplotlib inline 是一个魔法函数(Magic Functions)。官方给出的定义是:IPython有一组预先定义好的所谓的魔法函数(Magic Functions),你可以通过命令行的语法形式来访问它们。可见“%matplotlib inline”就是模仿命令行来访问magic函数的在IPython中独有的形式。magic函数分两种:一种是面向行的,另一种是面向单元型的。 行m...
阅读(51) 评论(0)

Python绘图问题:Matplotlib中如何正确显示中文

解决这个问题有多种方法,这里只介绍一种最简便的方法。只需要加一个import,加一行代码,再稍微修改对应位置就可以了。一、先看一下错误显示import matplotlib.pyplot as plt plt.plot((1,2,3),(4,3,-1)) plt.xlabel(u'横坐标') plt.ylabel(u'纵坐标') plt.show()可以看出横轴纵轴的中文未能正确显示。二、那么应该如...
阅读(64) 评论(0)

数据分析介绍之十——双变量建立关系之对数图

对数图是科学家、工程师和股票分析师随处可见的标准工具...
阅读(46) 评论(0)

数据分析介绍之九——双变量建立关系之平滑噪音

当数据嘈杂时,我们更关心的是确定数据是否显示出有意义的关系,而不是建立精确的字符。...
阅读(48) 评论(0)

数据分析介绍之八——双变量建立关系之散点图

一对一的绘制数据是简单的就去做...
阅读(49) 评论(0)

数据分析介绍之七——单变量数据观察之汇总统计和箱线图

模块提供了高效、便捷的numpy Python大数值数组的处理。...
阅读(43) 评论(0)

数据分析介绍之六——单变量数据观察之汇总统计和箱线图

你可能已经注意到,到目前为止我还没有在所有关于平均数和中位数、标准差等简单的主题发言,和百分位数。...
阅读(53) 评论(0)

数据分析介绍之五——单变量数据观察之排序图和升幅图

有一个与直方图和CDF有关的技术是值得了解的...
阅读(51) 评论(0)

数据分析介绍之四——单变量数据观察之累积分布函数

数据分析介绍之四——单变量数据观察之累积分布函数...
阅读(81) 评论(0)
101条 共6页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:82719次
    • 积分:1720
    • 等级:
    • 排名:千里之外
    • 原创:100篇
    • 转载:1篇
    • 译文:0篇
    • 评论:1条
    文章分类
    最新评论