# Python之numpy教程（三）：转置、乘积、通用函数

29895人阅读 评论(0)

1.数组转置和轴对换：数组不仅有transpose方法，还有一个特殊的T属性

arr = np.arange(15).reshape(3,5)

arr

array([[ 0,  1,  2,  3,  4],
[ 5,  6,  7,  8,  9],
[10, 11, 12, 13, 14]])
arr.T

array([[ 0,  5, 10],
[ 1,  6, 11],
[ 2,  7, 12],
[ 3,  8, 13],
[ 4,  9, 14]])

2.进行矩阵计算时，经常需要用到该操作，比如利用np.dot计算矩阵内积XTX：

arr = np.random.randn(6,3)
arr

array([[-0.83790345, -1.13304154, -0.42567014],
[ 0.75742538,  1.24634357, -1.00116761],
[ 0.54168995, -0.83717253, -1.11580943],
[-0.13315165,  0.0331654 ,  0.70605975],
[-2.57536154, -0.68951735,  1.16959181],
[-1.26193272, -1.24703158,  0.3183666 ]])
np.dot(arr.T,arr)

array([[ 9.81189403,  4.78491411, -4.51395404],
[ 4.78491411,  5.56963513, -1.01142215],
[-4.51395404, -1.01142215,  4.39638499]])

3.对于高维数组，transpose需要得到一个由轴编号组成的元组才能对这些轴进行转至（比较难理解）：

arr = np.arange(16).reshape((2,2,4))
arr

array([[[ 0,  1,  2,  3],
[ 4,  5,  6,  7]],

[[ 8,  9, 10, 11],
[12, 13, 14, 15]]])
arr.transpose((1,0,2))

array([[[ 0,  1,  2,  3],
[ 8,  9, 10, 11]],

[[ 4,  5,  6,  7],
[12, 13, 14, 15]]])

4.ndarray还有一个swapaxes方法，它接受一对轴变换：

arr

array([[[ 0,  1,  2,  3],
[ 4,  5,  6,  7]],

[[ 8,  9, 10, 11],
[12, 13, 14, 15]]])
arr.swapaxes(1,2)

array([[[ 0,  4],
[ 1,  5],
[ 2,  6],
[ 3,  7]],

[[ 8, 12],
[ 9, 13],
[10, 14],
[11, 15]]])

5.通用函数sqrt、exp、maximum

arr = np.arange(10)
arr

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

np.sqrt(arr)

array([ 0.        ,  1.        ,  1.41421356,  1.73205081,  2.        ,
2.23606798,  2.44948974,  2.64575131,  2.82842712,  3.        ])
np.exp(arr)

array([  1.00000000e+00,   2.71828183e+00,   7.38905610e+00,
2.00855369e+01,   5.45981500e+01,   1.48413159e+02,
4.03428793e+02,   1.09663316e+03,   2.98095799e+03,
8.10308393e+03])
x = np.random.randn(8)
x

array([-0.24726724,  0.69709717,  0.9658356 ,  1.89019088, -0.28912795,
-0.09235779,  0.37690775,  0.9102138 ])
y = np.random.randn(8)
y

array([-0.05048326, -0.02207697, -0.59940773, -1.32029941,  0.30894105,
-0.05807405, -1.5019804 ,  0.12918562])
np.maximum(x,y) #元素级最大值

array([-0.05048326,  0.69709717,  0.9658356 ,  1.89019088,  0.30894105,
-0.05807405,  0.37690775,  0.9102138 ])

6.modf函数可以把数组分别提取出整数部分和小数部分
arr = np.random.randn(7)*5
arr

array([ -1.53462646,   6.15168006,   4.32588912,  -0.05408803,
-2.98953481, -10.83013834,   1.13673478])
np.modf(arr)

(array([-0.53462646,  0.15168006,  0.32588912, -0.05408803, -0.98953481,
-0.83013834,  0.13673478]),
array([ -1.,   6.,   4.,  -0.,  -2., -10.,   1.]))

2
0

个人资料
• 访问：148426次
• 积分：2122
• 等级：
• 排名：千里之外
• 原创：100篇
• 转载：1篇
• 译文：0篇
• 评论：3条
文章分类
阅读排行
最新评论