Codeforces Round #369 (Div. 2) D DFS

原创 2016年08月30日 18:02:55



链接:戳这里


D. Directed Roads
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it consists of n towns numbered from 1 to n.

There are n directed roads in the Udayland. i-th of them goes from town i to some other town ai (ai ≠ i). ZS the Coder can flip the direction of any road in Udayland, i.e. if it goes from town A to town B before the flip, it will go from town B to town A after.

ZS the Coder considers the roads in the Udayland confusing, if there is a sequence of distinct towns A1, A2, ..., Ak (k > 1) such that for every 1 ≤ i < k there is a road from town Ai to town Ai + 1 and another road from town Ak to town A1. In other words, the roads are confusing if some of them form a directed cycle of some towns.

Now ZS the Coder wonders how many sets of roads (there are 2n variants) in initial configuration can he choose to flip such that after flipping each road in the set exactly once, the resulting network will not be confusing.

Note that it is allowed that after the flipping there are more than one directed road from some town and possibly some towns with no roads leading out of it, or multiple roads between any pair of cities.

Input
The first line of the input contains single integer n (2 ≤ n ≤ 2·105) — the number of towns in Udayland.

The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n, ai ≠ i), ai denotes a road going from town i to town ai.

Output
Print a single integer — the number of ways to flip some set of the roads so that the resulting whole set of all roads is not confusing. Since this number may be too large, print the answer modulo 109 + 7.

Examples
input
3
2 3 1
output
6
input
4
2 1 1 1
output
8
input
5
2 4 2 5 3
output
28
Note
Consider the first sample case. There are 3 towns and 3 roads. The towns are numbered from 1 to 3 and the roads are , ,  initially. Number the roads 1 to 3 in this order.

The sets of roads that ZS the Coder can flip (to make them not confusing) are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. Note that the empty set is invalid because if no roads are flipped, then towns 1, 2, 3 is form a directed cycle, so it is confusing. Similarly, flipping all roads is confusing too. Thus, there are a total of 6 possible sets ZS the Coder can flip.

The sample image shows all possible ways of orienting the roads from the first sample such that the network is not confusing.


题意:

给出n个点n条边的有向图。由于存在环,现在任意选择一个边的集合(size==2^n)翻转边的反向使得不存在环。

问有多少种这样的边集合


思路:

对于当前的环,大小为num,那么我们可以选择1条、2条、num-1条边翻转使得环不存在

ans+=2^(num)-2 对于不是环上的点,可以选择翻转或者不翻转 ans*=2^(n-num)


代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<vector>
#include <ctime>
#include<queue>
#include<set>
#include<map>
#include<list>
#include<stack>
#include<iomanip>
#include<cmath>
#include<bitset>
#define mst(ss,b) memset((ss),(b),sizeof(ss))
///#pragma comment(linker, "/STACK:102400000,102400000")
typedef long long ll;
typedef long double ld;
#define INF (1ll<<60)-1
#define Max 1e9
using namespace std;
#define mod 1000000007
struct edge{
    int v,next;
}e[1000100];
int head[200100],tot=0;
void Add(int u,int v){
    e[tot].v=v;
    e[tot].next=head[u];
    head[u]=tot++;
}
int vis[200100],pre[200100],cnt,num;
void DFS(int u,int fa,int deep){
    ++num;
    vis[u]=1;
    pre[u]=deep;
    for(int i=head[u];i!=-1;i=e[i].next){
        int v=e[i].v;
        if(vis[v]==0) DFS(v,u,deep+1);
        else if(v!=fa) {
            cnt=abs(pre[v]-pre[u])+1;
        }
    }
}
ll f[200100];
int n;
int main(){
    mst(head,-1);
    f[0]=1LL;
    for(int i=1;i<=200000;i++) f[i]=2LL*f[i-1]%mod;
    scanf("%d",&n);
    for(int i=1;i<=n;i++) {
        int x;
        scanf("%d",&x);
        Add(i,x);
        Add(x,i);
    }
    ll ans=1LL;
    int m=n;
    for(int i=1;i<=n;i++){
        if(vis[i]) continue;
        cnt=num=0;
        DFS(i,0,0);
        m-=cnt;
        ans=ans*((f[cnt]-2LL)%mod+mod)%mod;
    }
    ans=ans*f[m]%mod;
    printf("%I64d\n",(ans+mod)%mod);
    return 0;
}


poj2464 Brownie Points II

题意:在平面直角坐标系中给你N个点,stan和ollie玩一个游戏,首先stan在竖直方向上画一条直线,该直线必须要过其中的某个点,然后ollie在水平方向上画一条直线,该直线的要求是要经过一个sta...

Stoer-Wagner算法求全局最小割

转载:http://www.cnblogs.com/ylfdrib/archive/2010/08/17/1801784.html 一个无向连通网络,去掉一个边集可以使其变成两个连通分量则这...

Codeforces Round #369 (Div. 2) -- D. Directed Roads (DFS找环)

大体题意: 给你一个有向图,可能会有环,你的操作是反向一条路,求得使得图中没有环所有方案数? 思路: 假如图中没有环的话,有n条边,答案就是2^n 如果有个m边的环,间接法考虑,总方案是2^m...

Codeforces Round #369 (Div. 2) D. Directed Roads (dfs+组合数学 图论)

传送门:D. Directed Roads 描述: D. Directed Roads time limit per test 2 seconds memory li...

[Codeforces Round #369 (Div. 2)D. Directed Roads]Tarjan强连通分量+组合计数

[Codeforces Round #369 (Div. 2)D. Directed Roads]Tarjan强连通分量题目链接:[Codeforces Round #369 (Div. 2)D. D...

Codeforces Round #369 (Div. 2) D. Directed Roads

题目链接题意:给你一个n个点,n条有向边的图,你可以使任意条边反向,但是每条边只能反向一次,请求出使图不存在环的所有方案数量仔细思考我们发现,对于一个点数为x的环,除去全部不反向和全部反向两种情况,其...
  • naipp
  • naipp
  • 2016年08月30日 23:28
  • 119

Codeforces Round #369 (Div. 2) -- C. Coloring Trees (三维DP)

大体题意: 给你n 个树,你要给这些树染色,  标号是0 表示这棵树还没有染色,标号不是0 表示这棵树已经染色 不需要再染,这片树的美丽程度是  连续相同颜色的数目! 告诉你指定美丽程度K,和  最多...

Codeforces Round #369 (Div. 2) 手速练习赛

一不小心打开cf发现有一场div2在20:00,感觉非常资瓷,作为一个unrated狗感觉是个很好的涨分机会,然后就去注册了。        打比赛前发现注册8000+,害怕。。。        比赛...

[Codeforces Round #369 (Div. 2) C. Coloring Trees] DP

[Codeforces Round #369 (Div. 2) C. Coloring Trees] DP题目链接:[Codeforces Round #369 (Div. 2) C. Colorin...

codeforces Round #369 (Div. 2) C. Coloring Trees (三维DP)

 C. Coloring Trees time limit per test 2 seconds memory limit per test ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Codeforces Round #369 (Div. 2) D DFS
举报原因:
原因补充:

(最多只允许输入30个字)