对比学习用 Keras 搭建 CNN RNN 等常用神经网络

参考: 
各模型完整代码 
周莫烦的教学网站 
这个网站上有很多机器学习相关的教学视频,推荐上去学习学习。

Keras 是一个兼容 Theano 和 Tensorflow 的神经网络高级包, 用他来组件一个神经网络更加快速, 几条语句就搞定了. 而且广泛的兼容性能使 Keras 在 Windows 和 MacOS 或者 Linux 上运行无阻碍.

今天来对比学习一下用 Keras 搭建下面几个常用神经网络:

  1. 回归
  2. RNN回归
  3. 分类
  4. CNN分类
  5. RNN分类
  6. 自编码分类

它们的步骤差不多是一样的:

  1. [导入模块并创建数据]
  2. [建立模型]
  3. [定义优化器]
  4. [激活模型]
  5. [训练模型]
  6. [检验模型]
  7. [可视化结果]

为了对比学习,用到的数据也差不多是一样的, 
所以本文只把注意力放在 2. [建立模型] 上面,其它步骤大同小异,可以去参考里提到的教学网站观看或者直接看源代码。


1. 回归

目的是对一组数据进行拟合。

1. 用 Sequential 建立 model 
2. 再用 model.add 添加神经层,添加的是 Dense 全连接神经层。

参数有两个,一个是输入数据和输出数据的维度,本代码的例子中 x 和 y 是一维的。

如果需要添加下一个神经层的时候,不用再定义输入的纬度,因为它默认就把前一层的输出作为当前层的输入。在这个例子里,只需要一层就够了。

# build a neural network from the 1st layer to the last layer
model = Sequential()
model.add(Dense(output_dim=1, input_dim=1))
 
 
  • 1
  • 2
  • 3

2. RNN回归

我们要用 sin 函数预测 cos 数据,会用到 LSTM 这个网络。

RNN vs LSTM

1. 搭建模型,仍然用 Sequential。 
2. 然后加入 LSTM 神经层。

  • batch_input_shape 就是在后面处理批量的训练数据时它的大小是多少,有多少个时间点,每个时间点有多少个数据。
  • output_dim 意思是 LSTM 里面有二十个 unit。
  • return_sequences 意思是在每个时间点,要不要输出output,默认的是 false,现在我们把它定义为 true。如果等于 false,就是只在最后一个时间点输出一个值。
  • stateful,默认的也是 false,意义是批和批之间是否有联系。直观的理解就是我们在读完二十步,第21步开始是接着前面二十步的。也就是第一个 batch中的最后一步与第二个 batch 中的第一步之间是有联系的。

3. 有个不同点是 TimeDistributed。

在上一个回归问题中,我们是直接加 Dense 层,因为只在最后一个输出层把它变成一个全连接层。 
今天这个问题是每个时间点都有一个 output,那需要 dense 对每一个 output 都进行一次全连接的计算。

model = Sequential()
# build a LSTM RNN
model.add(LSTM(
    batch_input_shape=(BATCH_SIZE, TIME_STEPS, INPUT_SIZE),       # Or: input_dim=INPUT_SIZE, input_length=TIME_STEPS,
    output_dim=CELL_SIZE,
    return_sequences=True,      # True: output at all steps. False: output as last step.
    stateful=True,              # True: the final state of batch1 is feed into the initial state of batch2
))
# add output layer
model.add(TimeDistributed(Dense(OUTPUT_SIZE)))
adam = Adam(LR)
model.compile(optimizer=adam,
              loss='mse',)
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13


3. 分类

数据用的是 Keras 自带 MNIST 这个数据包,再分成训练集和测试集。x 是一张张图片,y 是每张图片对应的标签,即它是哪个数字。

简单介绍一下相关模块:

  • models.Sequential,用来一层一层一层的去建立神经层;
  • layers.Dense 意思是这个神经层是全连接层。
  • layers.Activation 激活函数。
  • optimizers.RMSprop 优化器采用 RMSprop,加速神经网络训练方法。
import numpy as np
np.random.seed(1337)  # for reproducibility
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.optimizers import RMSprop
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

在回归网络中用到的是 model.add 一层一层添加神经层,今天的方法是直接在模型的里面加多个神经层。好比一个水管,一段一段的,数据是从上面一段掉到下面一段,再掉到下面一段。

  • 第一段就是加入 Dense 神经层。32 是输出的维度,784 是输入的维度。 
    第一层传出的数据有 32 个feature,传给激活单元.
  • 激活函数用到的是 relu 函数。 
    经过激活函数之后,就变成了非线性的数据。
  • 然后再把这个数据传给下一个神经层,这个 Dense 我们定义它有 10 个输出的 feature。同样的,此处不需要再定义输入的维度,因为它接收的是上一层的输出。
  • 接下来再输入给下面的 softmax 函数,用来分类。
# Another way to build your neural net
model = Sequential([
    Dense(32, input_dim=784),
    Activation('relu'),
    Dense(10),
    Activation('softmax'),
])
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

4. CNN分类

CNN

数据仍然是用 mnist。

1. 建立网络第一层,建立一个 Convolution2D,参数有 filter 的数量。

  • filter 就是滤波器,用32个滤波器扫描同一张图片,每个滤波器会总结出一个 feature。每个滤波器会生成一整张图片,有32个滤波器就会生成32张代表不同特征的图片,
  • nb_row nb_col 代表这个滤波器有多少行多少列。
  • border_mode 代表这个滤波器在过滤时候用什么方式,这里我们用 same。 
    因为是第一层,所以需要定义输入数据的维度,1, 28, 28 就是图片图片的维度。 
    滤波器完成之后,会生成32层的数据,但是图片的长和宽是不变的,仍然是28×28。
  • 之后再加一个 relu 激活函数。
# Another way to build your CNN
model = Sequential()

# Conv layer 1 output shape (32, 28, 28)
model.add(Convolution2D(
    nb_filter=32,
    nb_row=5,
    nb_col=5,
    border_mode='same',     # Padding method
    dim_ordering='th',      # if use tensorflow, to set the input dimension order to theano ("th") style, but you can change it.
    input_shape=(1,         # channels
                 28, 28,)    # height & width
))
model.add(Activation('relu'))
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

2. Pooling 是一个向下取样的过程. 
它可以缩小生成出来的长和宽,高度不需要被压缩。

  • pool_size 是向下取样的时候,考虑多长多宽的图片。
  • strides 步长,是取完一个样之后要跳几步再取样,再跳几步再取样。
# Pooling layer 1 (max pooling) output shape (32, 14, 14)
model.add(MaxPooling2D(
    pool_size=(2, 2),
    strides=(2, 2),
    border_mode='same',    # Padding method
))
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

3. 接下来建立第二个神经层

  • 有 64 个 filter,5, 5 的长宽,再跟着一个激活函数。
  • 再跟着一个 MaxPooling2D 取样。
# Conv layer 2 output shape (64, 14, 14)
model.add(Convolution2D(64, 5, 5, border_mode='same'))
model.add(Activation('relu'))

# Pooling layer 2 (max pooling) output shape (64, 7, 7)
model.add(MaxPooling2D(pool_size=(2, 2), border_mode='same'))
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

4. 接下来进入全联接层

  • 用 Flatten 把卷出来的三维的层,抹平成二维的。
  • 接下来就加一个 Dense 全联接层,抹平就是为了可以把这一个一个点全连接成一个层.
  • 接着再加一个激活函数。
# Fully connected layer 1 input shape (64 * 7 * 7) = (3136), output shape (1024)
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation('relu'))
 
 
  • 1
  • 2
  • 3
  • 4

5. 在第二个全连接层,输出 10 个 unit, 用 softmax 作为分类。

# Fully connected layer 2 to shape (10) for 10 classes
model.add(Dense(10))
model.add(Activation('softmax'))
 
 
  • 1
  • 2
  • 3

5. RNN分类

RNN分类

RNN 是一个序列化的神经网,我们处理图片数据的时候,也要以序列化的方式去考虑。 
图片是由一行一行的像素组成,我们就一行一行地去序列化地读取数据。最后再进行一个总结,来决定它到底是被分辨成哪一类。

用到的参数含义:

  • TIME_STEPS 是要读取多少个时间点的数据,如果一次读一行需要读28次。
  • INPUT_SIZE 每次每一行读取多少个像素。
  • BATCH_SIZE 每一批训练多少张。
  • BATCH_INDEX 用来生成数据。
  • OUTPUT_SIZE 分类结果的长度,0到9,所以长度为 10。
  • CELL_SIZE 网络中隐藏层要放多少个 unit。 
    LR 是学习率。

1. 用 Sequential 建立模型,就是一层一层地加上神经层。

# build RNN model
model = Sequential()
 
 
  • 1
  • 2

2. 加上 SimpleRNN。 
batch_input_shape 就是在后面处理批量的训练数据时它的大小是多少,有多少个时间点,每个时间点有多少个像素。

# RNN cell
model.add(SimpleRNN(
    # for batch_input_shape, if using tensorflow as the backend, we have to put None for the batch_size.
    # Otherwise, model.evaluate() will get error.
    batch_input_shape=(None, TIME_STEPS, INPUT_SIZE),       # Or: input_dim=INPUT_SIZE, input_length=TIME_STEPS,
    output_dim=CELL_SIZE,
    unroll=True,
))
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

3. 加 Dense 输出层。 
输出 output 长度为 10,接着用 softmax 激活函数用于分类。

# output layer
model.add(Dense(OUTPUT_SIZE))
model.add(Activation('softmax'))
 
 
  • 1
  • 2
  • 3

4. 在训练的时候有一个小技巧,就是怎么去处理批量。 
输出结果时每 500 步输出一下测试集的准确率和损失。

需要用到 BATCH_INDEX,一批批地截取数据,下一批的时候,这个 BATCH_INDEX 就需要累加,后面的时间点和步长没有变化都是28。 
y 的批量和 x 的处理是一样的,只不过 y 只有二维,所以它只有两个参数。

后面有一个判断语句,如果这个 index 大于训练数据的总数,index 就变为 0,再从头开始一批批处理。

# training
for step in range(4001):
    # data shape = (batch_num, steps, inputs/outputs)
    X_batch = X_train[BATCH_INDEX: BATCH_INDEX+BATCH_SIZE, :, :]
    Y_batch = y_train[BATCH_INDEX: BATCH_INDEX+BATCH_SIZE, :]
    cost = model.train_on_batch(X_batch, Y_batch)
    BATCH_INDEX += BATCH_SIZE
    BATCH_INDEX = 0 if BATCH_INDEX >= X_train.shape[0] else BATCH_INDEX

    if step % 500 == 0:
        cost, accuracy = model.evaluate(X_test, y_test, batch_size=y_test.shape[0], verbose=False)
        print('test cost: ', cost, 'test accuracy: ', accuracy)
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

6. 自编码分类

自编码

自编码,简单来说就是把输入数据进行一个压缩和解压缩的过程。 
原来有很多 Feature,压缩成几个来代表原来的数据,解压之后恢复成原来的维度,再和原数据进行比较。

做的事情是把 datasets.mnist 数据的 28×28=784 维的数据,压缩成 2 维的数据,然后在一个二维空间中可视化出分类的效果。

模型结构:

encoding_dim,要压缩成的维度。

# in order to plot in a 2D figure
encoding_dim = 2

# this is our input placeholder
input_img = Input(shape=(784,))
 
 
  • 1
  • 2
  • 3
  • 4
  • 5

建立 encoded 层和 decoded 层,再用 autoencoder 把二者组建在一起。训练时用 autoencoder 层。

1. encoded 用4层 Dense 全联接层 
激活函数用 relu,输入的维度就是前一步定义的 input_img。 
接下来定义下一层,它的输出维度是64,输入是上一层的输出结果。 
在最后一层,我们定义它的输出维度就是想要的 encoding_dim=2

2. 解压的环节,它的过程和压缩的过程是正好相反的。 
相对应层的激活函数也是一样的,不过在解压的最后一层用到的激活函数是 tanh。因为输入值是由 -0.5 到 0.5 这个范围,在最后一层用这个激活函数的时候,它的输出是 -1 到 1,可以是作为一个很好的对应。

# encoder layers
encoded = Dense(128, activation='relu')(input_img)
encoded = Dense(64, activation='relu')(encoded)
encoded = Dense(10, activation='relu')(encoded)
encoder_output = Dense(encoding_dim)(encoded)

# decoder layers
decoded = Dense(10, activation='relu')(encoder_output)
decoded = Dense(64, activation='relu')(decoded)
decoded = Dense(128, activation='relu')(decoded)
decoded = Dense(784, activation='tanh')(decoded)

# construct the autoencoder model
autoencoder = Model(input=input_img, output=decoded)
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

接下来直接用 Model 这个模块来组建模型 
输入就是图片,输出是解压的最后的结果。

# construct the encoder model for plotting
encoder = Model(input=input_img, output=encoder_output)
 
 
  • 1
  • 2

当我们想要看由 784 压缩到 2维后,这个结果是什么样的时候,也可以只单独组建压缩的板块,此时它的输入是图片,输出是压缩环节的最后结果。

最后分类的可视化结果: 


推荐阅读 
历史技术博文链接汇总 
也许可以找到你想要的

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Keras小波神经网络是一种基于小波变换的神经网络模型,它可以用于信号处理、图像处理等领域。下面是一个简单的Keras小波神经网络的示例代码: ```python from keras.layers import Input, Dense from keras.models import Model from keras import backend as K import pywt # 定义小波函数 def wavelet(x): cA, cD = pywt.dwt(x, 'haar') return K.concatenate([cA, cD]) # 构建模型 input_data = Input(shape=(100,)) x = Dense(64, activation='relu')(input_data) encoded = Dense(32, activation=wavelet)(x) x = Dense(64, activation='relu')(encoded) decoded = Dense(100, activation='sigmoid')(x) autoencoder = Model(input_data, decoded) autoencoder.compile(optimizer='adam', loss='binary_crossentropy') # 训练模型 autoencoder.fit(x_train, x_train, epochs=50, batch_size=256, shuffle=True) ``` 在这个示例中,我们定义了一个小波函数,将其用作激活函数,然后构建了一个自编码器模型,并使用二进制交叉熵作为损失函数进行训练。 ### 回答2: Keras小波神经网络是一种基于Keras深度学习框架的小波神经网络模型。小波神经网络是一种融合小波分析和神经网络技术的模型,其主要用于信号处理和模式识别任务。 在Keras小波神经网络中,使用小波变换对输入信号进行多尺度分解,将信号分解为不同频率成分。然后,通过神经网络对每个频率成分进行学习和建模。小波分解的多尺度特性能够捕捉到不同尺度的信号模式,从而提高模型对于信号的表示和抽取能力。 Keras小波神经网络的架构和普通神经网络类似,包括输入层、隐藏层和输出层。隐藏层可以包括多个小波层,每个小波层由小波变换和卷积层组成。小波变换将输入信号分解为多个频率子带,然后卷积层对子带进行特征提取和表示。在隐藏层之后,可以添加全连接层和激活函数进行非线性变换。最后,输出层通过softmax函数将模型的输出转化为概率分布。 Keras小波神经网络的训练过程与传统神经网络类似,通常使用反向传播算法进行权重的优化和更新。同时,小波神经网络还可以使用一些常见的优化算法,如随机梯度下降(SGD)和Adam优化器,来加速模型的训练过程。 总结来说,Keras小波神经网络是一种基于Keras框架的小波分析和神经网络相结合的模型。通过小波变换和神经网络的结合,该模型能够更好地提取和表示信号的多尺度特征,从而在信号处理和模式识别任务中获得更好的性能和效果。 ### 回答3: Keras小波神经网络是一种基于Keras深度学习库和小波神经网络模型的结合。小波神经网络是一种结合了小波变换和神经网络的模型,能够在处理信号和图像等数据时具有优秀的特性。 Keras小波神经网络通常包含以下几个主要部分:小波变换、神经网络模型和训练过程。 首先,小波变换是将输入的信号或图像分解为不同频率的子波,并提取出各个子波的特征,以实现信号或图像的多尺度分析。 接下来,神经网络模型被用于对小波系数进行处理和学习。通常使用卷积神经网络CNN)来进行特征提取和分类任务,也可以使用循环神经网络RNN)来处理序列数据。 最后,训练过程是使用已标记的训练数据对神经网络模型进行参数优化,以使其能够准确地预测未标记数据的类别或特征。 Keras小波神经网络具有以下优势: 1. 多尺度特征提取能力:小波变换可以将信号或图像分解为不同频率的子波,从而实现多尺度特征提取,适用于多尺度数据分析和处理。 2. 高效的参数学习:神经网络模型可以通过大规模训练数据进行参数学习,从而对小波系数进行优化,有效提高模型的性能。 3. 鲁棒性和泛化能力:小波神经网络可以对数据进行自适应处理,并具有较强的鲁棒性和泛化能力,适用于各种实际应用场景。 总的来说,Keras小波神经网络是一种结合了Keras深度学习库和小波神经网络模型的方法,具有多尺度特征提取、高效的参数学习和鲁棒的泛化能力等优势,可应用于各种信号和图像处理任务中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值