关闭

Softmax Regression

原文:http://www.cnblogs.com/tornadomeet/archive/2013/03/22/2975978.html softmax,互斥 k个logistic,多分类 -------------------------------------------------------------------------------------------------...
阅读(262) 评论(0)

再谈机器学习中的归一化方法(Normalization Method)

转自 http://blog.csdn.net/zbc1090549839/article/details/44103801 min-max, z-score 等 ========================================================= 机器学习、数据挖掘工作中,数据前期准备、数据预处理过程、特征提取等...
阅读(751) 评论(0)

CNN RNN 杂想

CNN,卷积,其实就是映射,这个空间,映射到另一个空间。然而,卷积的移动,这个很有趣。就像是我们所处的时间,其实是有时间这个维度的,但是我们感受不到。但是这个卷积的移动,就把时间的这个维度,也映射到了另一个空间! Batch取全部时,看到的是只有一个曲面,速度快,但不是最优。所以,有小一点的batch,随机性。但是,只取一个的时候,SGD,随机性有时会很大,难以收敛 CNN,多少个output ch...
阅读(262) 评论(0)

个人理解的在线推荐

个人理解的: 为什么要做 因为离线的数据太大了,比如user_id * item_id 的量级太大,不可能都离线算好,等到某个 user 来的,直接查表,得到item_id的排序 因为需要根据一些在线的特征来计算(当然也会有离线的特征),比如当前浏览的类目、当前时间段、等等之类的 因为需要实时反映一些新的模式。以前的模型,可能是事先算好的,一周更新一次(在线用的,也是这个事先算好的模型,只是会有部...
阅读(215) 评论(0)

机器学习算法中如何选取超参数:学习速率、正则项系数、minibatch size

原文:http://blog.csdn.net/u012162613/article/details/44265967 本文是《Neural networks and deep learning》概览 中第三章的一部分,讲机器学习算法中,如何选取初始的超参数的值。(本文会不断补充) 学习速率(learning rate,η) 运用梯度下降算法进行优化时,权重的...
阅读(728) 评论(0)

Batch Normalization & Layer Normalization

Batch Normalization: 原文:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 详细说明:http://blog.csdn.net/hjimce/article/details/50866313 理解:http://blog.csdn.ne...
阅读(2607) 评论(2)

机器学习中的范数规则化之(一)L0、L1与L2范数

原文:http://blog.csdn.net/zouxy09/article/details/24971995 主要思想: 1. L0,是非0的个数,但是NP,所以一般选择L1 2. L1,稀疏,特征选择 3. L2,防止过拟合 ====== 原文 =========== 机器学习中的范数规则化之(一)L0、L1与L2范数 zouxy09...
阅读(327) 评论(0)

batch-GD, SGD, Mini-batch-GD, Stochastic GD, Online-GD -- 大数据背景下的梯度训练算法

原文地址:http://www.cnblogs.com/richqian/p/4549590.html 另外有一篇讲batch size的:https://www.zhihu.com/question/32673260 主要思想: 1. batch,全部样本的梯度都算了,累加一起,做变化。 2. mini-batch,一部分一部分的样本,做变化。 ...
阅读(242) 评论(0)

bootstrap, boosting, bagging 几种方法的联系

转:http://blog.csdn.net/jlei_apple/article/details/8168856这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, jackknife, bagging, boosting, random forest 都有介绍,以下是搜索得到的原文,没找到博客作者的地址,在这里致谢作者的研究。一并列出一些找到的介绍boosting算法的...
阅读(166) 评论(0)

知识图谱

周末讲座的内容,很泛的了解。 另外,transE 优化目标,头实体+关系=尾实体,低维语义表示,这想法赞。建模!或者参考这篇:http://www.tuicool.com/articles/jEzmUv一 开始的是one hot,cout base distribute representation,再到后面的同一语义空间 第一方面,三元组的形式 transE 优化目标,头实体+关系=尾...
阅读(1190) 评论(0)

CNN for NLP

强烈推荐:http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp论文:《Convolutional Neural Networks for Sentence Classification》Tensorflow 实现blog:http://www.wildml.com/2015/12/imple...
阅读(592) 评论(0)

Word2Vec Sent2Vec

好好研究了下Word2Vec和Sent2Vec的代码,推导了下公式,花费了不少的时间,不过清晰了很多。源代码参考:https://github.com/klb3713/sentence2vec理论上是分两部分,首先是进行Word2Vec的,获得词向量,以及权重等。然后再进行Sent2Vec的处理,基于已有的Word Vector以及网络权重。Word2Vec 预测目标 总体的目标是,词向量作为输入(...
阅读(2173) 评论(1)

Stanford 中文分词

http://nlp.stanford.edu/software/segmenter.shtml https://github.com/jiekechoo/NLPStudy http://blog.csdn.net/shijiebei2009/article/details/42525091 貌似实际用的不是这几篇。中间2. github上那篇,是怎么在maven中使用,通过properties文件...
阅读(2889) 评论(0)

JAVA WordVec 的一个实现

https://github.com/NLPchina/Word2VEC_java这个亲测可用。 然而 Word2VEC 里的 sum 函数错了,返回的是引用,要修改。下面逻辑还是有点绕,有想法了再改得清爽点:private float[] sum(float[] center, float[] fs) { if (fs == null) { if (cen...
阅读(552) 评论(0)

python scikit learn 模板

原文: http://blog.csdn.net/zouxy09/article/details/48903179代码如下:#!usr/bin/env python # -*- coding: utf-8 -*-import sys import os import time from sklearn import metrics import numpy as np import cPick...
阅读(323) 评论(0)
226条 共16页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:183505次
    • 积分:3459
    • 等级:
    • 排名:第10672名
    • 原创:147篇
    • 转载:79篇
    • 译文:0篇
    • 评论:18条
    最新评论