POJ1001 Exponentiation,高精度乘法

原创 2012年03月22日 13:32:36
题目:给定R和n,0.0 < R < 99.999,0 < n <= 25,计算R
输入:一系列R和n,每个R和n对占一行,R占6列,n占第8,9列
输出:对每个R和n对,输出对应的结果

代码:

#include<stdio.h>
#define N 150

char s[6];
char r[6];
char n;
char decimal = 0;

char result[N] = {0};
char temp[N] = {0};

void initArray(char* a, int n)
{
	int i;
	for(i=0; i<n; i++)
	{
		a[i] = 0;
    }
}

void copy(char* src, char* dest, int start, int end)
{
	int i;
	for(i=start; i<=end; i++)
	{
		dest[i] = src[i];
	}
}

int findLastIndex(char* a)
{
	int i=N-1;
	for(; i>=0 && a[i]==0; i--);
	return i;
}

void adjust(char* a)
{
	int i;
	int c=0;
	for(i=0; i<N; i++)
	{
		a[i] += c;
		c = a[i]/10;
		a[i] = a[i]%10;
	}
}

void transformR()
{
	    decimal = 0;
		char foundDec = 0;
		int i,j;
		
		initArray(r, 6);
		
		//转换R
		for(i=5,j=0; i>=0; i--)
		{
			if(s[i] != '.')
			{
				r[j++] = s[i]-'0';
				if(!foundDec)
				{
				  decimal++;
				}
			}
			else if(s[i] == '.')
			{
				foundDec = 1;
			}
		}
		if(!foundDec)
		{
			decimal = 0;
		}
}

void printArr(char* a, int end, int start)
{
	int i;
	for(i=end; i>=start; i--)
	{
		 printf("%d", a[i]);
	}
}

void print(char* a)
{
	int i;
	int start,end;
	end = findLastIndex(a);
	decimal = decimal*n;
	if(decimal==0)
	{
	   printArr(a, end, 0);
	   printf("\n");
	}
	else
	{
		for(i=0; i<N && a[i]==0; i++);
		start = i;
		if(decimal <= start)
		{
		  printArr(a, end, decimal);	
		  printf("\n");
	    }
	    else if(decimal > start && decimal<=end)
	    {
			printArr(a, end, decimal);
			printf(".");
			printArr(a, decimal-1, start);
			printf("\n");
		}
		else
		{
			printf(".");
			printArr(a, decimal-1, start);
			printf("\n");
		}
	}
	
}

void compute()
{
	int i,j,k;
	int lastI;
	initArray(temp, N);
	initArray(result, N);
	
	for(i=0; i<6; i++)
	{
		result[i] = r[i];
	}
	//计算
	for(i=1; i<n; i++) 
	{
		
		lastI = findLastIndex(result);
		for(j=0; j<6; j++)
		{
			if(r[j] != 0)
			{
			  for(k=0; k<=lastI; k++)
			  {
				temp[j+k] += r[j]*result[k];				
			  }
			  adjust(temp);
		    }
		}
		copy(temp, result, 0, N-1);
		initArray(temp, N);
	}
}


int main()
{
	while(scanf("%s%d", s, &n) !=EOF)
	{
		transformR();
		compute();
		print(result);
    }

	return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

【POJ】 1001-Exponentiation 【高精度乘法】

题目: Exponentiation Time Limit: 500MS   Memory Limit: 10000K Total Submissions: 139077   Acce...

poj_1001 Exponentiation 高精度乘法

Exponentiation 这一题的实质:考察高精度乘法。 注意的点:细心!1. 输入结束的判断;2.整数和小数部分的输出。 下面附上代码,注释已经比较详细了。 #include #define...

POJ1001 Exponentiation 高精度乘法

Problem Address:http://poj.org/problem?id=1001【前言】想随便找到题,于是翻出了收藏夹里的这道题。嗯,高精度。记得之前写过一个高精度乘法,但是不知道为什么错...

poj1001高精度乘法

POJ 1001Exponentiation解题报告——求高精度幂——【PKU ACM】

这道题目的整体思想,就是将float型数据,转化成整数,将计算float型幂次方,转变成求整数的幂次方。 然后利用数组来存储乘积的每一位。 核心代码就是那一段高精度求幂的代码,希望大家能够自己仔细...

POJ 1001 Exponentiation 求高精度幂

Exponentiation Time Limit: 500MS   Memory Limit: 10000K Total Submissions: 147507   Accepted: ...

高精度浮点数幂次方 POJ 1001 Exponentiation

题目是在POJ上的第1001道 Exponentiation Description Problems involving the computation of exact values ...

POJ1001 Exponentiation(高精度幂)

这道题的思路很简单; 假如求1.23的3次幂,首先是123的3次幂,用大数乘法模版,就这计算小数点就好了,小数部分两位,3次幂之后就有6位,在结果第六位再加上小数点就好了。这...

poj 1001 Exponentiation 高精度乘方

点击打开链接题目lianjie
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)