数值分析-拉格朗日中值定理与积分中值定理

拉格朗日中值定理

拉格朗日中值定理的几何意义

如果函数f(x)满足

  1. 闭区间[a,b]连续
  2. 开区间(a,b)可导

那么在(a,b)内至少有一点ξ(a < ξ < b),使等式

f(b)-f(a)=f^\prime(\xi)(b-a)

成立。此定理称为拉格朗日中值定理拉格朗日中值定理罗尔中值定理的推广,同时也是柯西中值定理的特殊情形。

 

积分中值定理

积分中值定理分为积分第一中值定理积分第二中值定理,它们各包含两个公式。其退化状态均指在ξ的变化过程中存在一个时刻使两个图形的面积相等(严格表述在下面)。

 积分第一中值定理

设 f:[a,b]\rightarrow \mathbf R 为一连续函数,g:[a,b]\rightarrow \mathbf R 为一正的可积函数,那么存在一点 \xi\in [a,b] 使得

\int_a^b f(x)g(x)\,dx= f(\xi)\int_a^b g(x)\,dx
 证明

因为 f 是闭区间上的连续函数,f 取得最大值 M 和最小值 m。于是

mg(x)\leq f(x)g(x)\leq Mg(x)

对不等式求积分,我们有

m\int_a^b g(x)\,dx\leq \int_a^b f(x)g(x)\,dx \leq M\int_a^b g(x)\,dx

若 \int_a^b g(x)\,dx=0,则 \int_a^b f(x)g(x)\,dx=0ξ 可取 [a,b] 上任一点。

设 \int_a^b g(x)\,dx>0,那么

m\leq \frac{\int_a^b f(x)g(x)\,dx}{\int_a^b g(x)\,dx}\leq M

因为 m\leq f(x)\leq M是连续函数,则必存在一点 \xi\in [a,b],使得

f(\xi)= \frac{\int_a^b f(x)g(x)\,dx}{\int_a^b g(x)\,dx}
积分第一中值定理推论的几何意义
推论(拉格朗日中值定理的积分形式)

在上式中令g(x) = 1,则可得出:

设 f:[a,b]\rightarrow \mathbf R 为一连续函数,则∃\xi \in [a,b],使

f(\xi)= \frac{\int_a^b f(x)\,dx}{b-a}

它也可以由拉格朗日中值定理推出:

F(x)[a,b]上可导,f(x)=F^\prime(x),则∃\xi \in [a,b],使

f(\xi) = F^\prime(\xi)= \frac{F(b)-F(a)}{b-a} = \frac{\int_a^b f(x)\,dx}{b-a}

 积分第二中值定理

积分第二中值定理与积分第一中值定理相互独立,却又是更精细的积分中值定理。它可以用来证明Dirichlet-Abel 反常 Rieman 积分判别法

内容

若f,g在[a,b]上黎曼可积且f(x)在[a,b]上单调,则存在[a,b]上的点ξ使

\int\limits_a^b {f(x)g(x)dx = } f(a)\int\limits_a^\xi  {g(x)dx + } f(b)\int\limits_\xi ^b {g(x)dx}
退化态的几何意义

令g(x)=1,则原公式可化为:

\int\limits_a^b {f(x)dx}=f(a)(\xi-a)+f(b)(b-\xi)

进而导出:

\int\limits_a^\xi {f(x)dx}-f(a)(\xi-a)=f(b)(b-\xi)-\int\limits_\xi^b {f(x)dx}
  • 8
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值