极大释然估计原理

转载 2016年08月28日 21:44:25

最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知。我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差。

    最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布的。下面我们具体描述一下最大似然估计:

    首先,假设为独立同分布的采样,θ为模型参数,f为我们所使用的模型,遵循我们上述的独立同分布假设。参数为θ的模型f产生上述采样可表示为

       

回到上面的“模型已定,参数未知”的说法,此时,我们已知的为,未知为θ,故似然定义为:

   

  在实际应用中常用的是两边取对数,得到公式如下:

     

  其中称为对数似然,而称为平均对数似然。而我们平时所称的最大似然为最大的对数平均似然,即:

   

     举个别人博客中的例子,假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我 们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球 再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少?很多人马上就有答案了:70%。而其后的理论支撑是什么呢?

    我们假设罐中白球的比例是p,那么黑球的比例就是1-p。因为每抽一个球出来,在记录颜色之后,我们把抽出的球放回了罐中并摇匀,所以每次抽出来的球的颜 色服从同一独立分布。这里我们把一次抽出来球的颜色称为一次抽样。题目中在一百次抽样中,七十次是白球的概率是P(Data | M),这里Data是所有的数据,M是所给出的模型,表示每次抽出来的球是白色的概率为p。如果第一抽样的结果记为x1,第二抽样的结果记为x2... 那么Data = (x1,x2,…,x100)。这样,

    P(Data | M)

     = P(x1,x2,…,x100|M)

     = P(x1|M)P(x2|M)…P(x100|M)

     = p^70(1-p)^30.

那么p在取什么值的时候,P(Data |M)的值最大呢?将p^70(1-p)^30p求导,并其等于零。

    70p^69(1-p)^30-p^70*30(1-p)^29=0。

    解方程可以得到p=0.7

在边界点p=0,1,P(Data|M)=0。所以当p=0.7时,P(Data|M)的值最大。这和我们常识中按抽样中的比例来计算的结果是一样的。

假如我们有一组连续变量的采样值(x1,x2,…,xn),我们知道这组数据服从正态分布,标准差已知。请问这个正态分布的期望值为多少时,产生这个已有数据的概率最大?

    P(Data | M) = ?

根据公式

    

  可得:

 

  对μ求导可得 ,则最大似然估计的结果为μ=(x1+x2+…+xn)/n

 

      由上可知最大似然估计的一般求解过程:

  (1) 写出似然函数;

  (2) 对似然函数取对数,并整理;

  (3) 求导数 ;

  (4) 解似然方程

 

注意:最大似然估计只考虑某个模型能产生某个给定观察序列的概率。而未考虑该模型本身的概率。这点与贝叶斯估计区别。贝叶斯估计方法将在以后的博文中描述

本文参考

http://en.wikipedia.org/wiki/Maximum_likelihood

http://www.shamoxia.com/html/y2010/1520.html

回归-用极大似然估计来解释最小二乘

导语    这是线性回归的第一篇,后面还有多篇,包括普通最小二乘、梯度下降、牛顿法等知识,本篇主要是阐述最小二乘法损失函数与高斯分布的联系,虽然逻辑回归也是线性回归的一个变种,但它主要是0-1分布,不...
  • solo_sky
  • solo_sky
  • 2015年08月19日 16:30
  • 2505

最大似然估计和最小二乘估计的区别与联系

看似最小二乘估计与最大似然估计在推导得到的结果很相似,但是其前提条件必须引起大家的注意!!! 对于最小二乘估计,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值和观测值之差的平方和最小...
  • xidianzhimeng
  • xidianzhimeng
  • 2014年03月09日 15:57
  • 26548

最大似然估计(MLE)与最小二乘估计(LSE)的区别

最大似然估计与最小二乘估计的区别标签(空格分隔): 概率论与数理统计最小二乘估计 对于最小二乘估计来说,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值与观测值之差的平方和最小。 ...
  • u010161630
  • u010161630
  • 2016年07月24日 10:35
  • 1365

极大似然估计详解

极大似然估计         以前多次接触过极大似然估计,但一直都不太明白到底什么原理,最近在看贝叶斯分类,对极大似然估计有了新的认识,总结如下: 贝叶斯决策         首先来看贝叶斯分类,...
  • zengxiantao1994
  • zengxiantao1994
  • 2017年05月28日 00:55
  • 16997

最大似然估计详解

  最大似然估计是建立在最大似然原理的基础之上。最大似然原理的直观理解是:设一个随机试验有若干个可能的结果A1,A2,…,An,在一次试验中,结果Ak出现,则一般认为实验对Ak的出现最...
  • jeryjeryjery
  • jeryjeryjery
  • 2017年05月18日 15:07
  • 2714

概率统计与机器学习:独立同分布,极大似然估计,线性最小二乘回归

独立同分布独立性 概念:事件A,B发生互不影响 公式:P(XY)=P(X)P(Y)P(XY)=P(X)P(Y) , 即事件的概率等于各自事件概率的乘积 举例: 正例:两个人同时向上抛硬币,两个硬币均...
  • qq_33638791
  • qq_33638791
  • 2017年07月15日 10:01
  • 1425

【机器学习笔记】最大似然估计法与LR中 J of theta 的概率解释

看公开课的时候再次遇到,决心搞懂他…首先是Andrew Ng在公开课中提到为什么LR的损失函数要用最小二乘,给出了概率解释,是在样本误差服从IID,并且误差整体服从高斯分布的最大似然函数的log表出。...
  • u013398398
  • u013398398
  • 2017年10月02日 20:20
  • 265

极大似然估计和最大后验估计

极大似然估计和最大后验估计  说到极大似然估计,那肯定先要说一下似然函数,似然函数通常是用描述一个(或一系列)事件发生的概率来表示。把似然函数写出来,大致是这样的: L(θ|χ)=p(χ|θ)L(\...
  • ijnmklpo
  • ijnmklpo
  • 2016年08月30日 21:53
  • 568

极大似然估计 最大后验概率估计

经验风险最小化 结构风险最小化
  • chaoshengmingyue
  • chaoshengmingyue
  • 2017年07月09日 23:22
  • 832

极大释然估计原理

极大似然估计原理
  • lijinxiu123
  • lijinxiu123
  • 2016年08月28日 21:44
  • 281
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:极大释然估计原理
举报原因:
原因补充:

(最多只允许输入30个字)