极大释然估计原理

转载 2016年08月28日 21:44:25

最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知。我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差。

    最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布的。下面我们具体描述一下最大似然估计:

    首先,假设为独立同分布的采样,θ为模型参数,f为我们所使用的模型,遵循我们上述的独立同分布假设。参数为θ的模型f产生上述采样可表示为

       

回到上面的“模型已定,参数未知”的说法,此时,我们已知的为,未知为θ,故似然定义为:

   

  在实际应用中常用的是两边取对数,得到公式如下:

     

  其中称为对数似然,而称为平均对数似然。而我们平时所称的最大似然为最大的对数平均似然,即:

   

     举个别人博客中的例子,假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我 们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球 再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少?很多人马上就有答案了:70%。而其后的理论支撑是什么呢?

    我们假设罐中白球的比例是p,那么黑球的比例就是1-p。因为每抽一个球出来,在记录颜色之后,我们把抽出的球放回了罐中并摇匀,所以每次抽出来的球的颜 色服从同一独立分布。这里我们把一次抽出来球的颜色称为一次抽样。题目中在一百次抽样中,七十次是白球的概率是P(Data | M),这里Data是所有的数据,M是所给出的模型,表示每次抽出来的球是白色的概率为p。如果第一抽样的结果记为x1,第二抽样的结果记为x2... 那么Data = (x1,x2,…,x100)。这样,

    P(Data | M)

     = P(x1,x2,…,x100|M)

     = P(x1|M)P(x2|M)…P(x100|M)

     = p^70(1-p)^30.

那么p在取什么值的时候,P(Data |M)的值最大呢?将p^70(1-p)^30p求导,并其等于零。

    70p^69(1-p)^30-p^70*30(1-p)^29=0。

    解方程可以得到p=0.7

在边界点p=0,1,P(Data|M)=0。所以当p=0.7时,P(Data|M)的值最大。这和我们常识中按抽样中的比例来计算的结果是一样的。

假如我们有一组连续变量的采样值(x1,x2,…,xn),我们知道这组数据服从正态分布,标准差已知。请问这个正态分布的期望值为多少时,产生这个已有数据的概率最大?

    P(Data | M) = ?

根据公式

    

  可得:

 

  对μ求导可得 ,则最大似然估计的结果为μ=(x1+x2+…+xn)/n

 

      由上可知最大似然估计的一般求解过程:

  (1) 写出似然函数;

  (2) 对似然函数取对数,并整理;

  (3) 求导数 ;

  (4) 解似然方程

 

注意:最大似然估计只考虑某个模型能产生某个给定观察序列的概率。而未考虑该模型本身的概率。这点与贝叶斯估计区别。贝叶斯估计方法将在以后的博文中描述

本文参考

http://en.wikipedia.org/wiki/Maximum_likelihood

http://www.shamoxia.com/html/y2010/1520.html

相关文章推荐

极大似然估计原理详细说明

这个整理相信您会明白极大似然估计的实质的

机器学习数学原理(1)——极大似然估计法

机器学习数学原理(1)——极大似然估计法事实上机器学习的大部分算法都是以数理统计和概率论为理论基础构建的。笔者在学习机器学习的过程中,意识到其实机器学习中的很多假设背后都是有着数学原理支撑的,从而使得...

[(机器学习)概率统计]极大似然估计MLE原理+python实现

在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性”和“或然性”或“概率”...

使用极大似然法对逻辑回归中的参数进行估计的数学原理

1.极大似然估计中采样产生的样本需要满足一个重要假设,所有采样的样本都是独立同分布的。 2.极大似然估计是在模型已定,参数未知的情况下,估计模型中的具体参数。 3.极大似然估计的核心是让产生所采样...
  • wjlucc
  • wjlucc
  • 2017年04月28日 11:32
  • 1085

先验概率、最大释然估计(MLE)与最大后验估计(MAP)

前言在数据分析和机器学习中,估计是一个很重要的内容,这里着重介绍下极大似然估计与极大后验估计。最大似然估计(MLE)    最大似然估计是模型已定,参数未定时的一种估计方法。比如说对于抛硬币而言,模型...

R语言-极大似然估计

  • 2015年05月14日 15:39
  • 159B
  • 下载

统计线性模型极小极大估计

  • 2009年11月18日 10:54
  • 459KB
  • 下载

【机器学习】聚类分析(二)——从极大似然估计到EM算法

本文主要把EM算法的内容及其简单推导交待清楚,为后面实现高斯混合模型的聚类算法做一个铺垫,因此本文不会出现代码。...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:极大释然估计原理
举报原因:
原因补充:

(最多只允许输入30个字)