python 装饰器

转载 2016年05月31日 22:04:34

原文地址:http://3060674.blog.51cto.com/3050674/1736659?utm_source=tuicool&utm_medium=referral


装饰器是程序开发中经常会用到的一个功能,用好了装饰器,开发效率如虎添翼,所以这也是Python面试中必问的问题,但对于好多小白来讲,这个功能 有点绕,自学时直接绕过去了,然后面试问到了就挂了,因为装饰器是程序开发的基础知识,这个都 不会,别跟人家说你会Python, 看了下面的文章,保证你学会装饰器。



1、先明白这段代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
#### 第一波 ####
def foo():
    print 'foo'
  
foo     #表示是函数
foo()   #表示执行foo函数
  
#### 第二波 ####
def foo():
    print 'foo'
  
foo = lambda x: x + 1
  
foo()   # 执行下面的lambda表达式,而不再是原来的foo函数,因为函数 foo 被重新定义了


2、需求来了

初创公司有N个业务部门,1个基础平台部门,基础平台负责提供底层的功能,如:数据库操作、redis调用、监控API等功能。业务部门使用基础功能时,只需调用基础平台提供的功能即可。如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
############### 基础平台提供的功能如下 ###############
  
def f1():
    print 'f1'
  
def f2():
    print 'f2'
  
def f3():
    print 'f3'
  
def f4():
    print 'f4'
  
############### 业务部门A 调用基础平台提供的功能 ###############
  
f1()
f2()
f3()
f4()
  
############### 业务部门B 调用基础平台提供的功能 ###############
  
f1()
f2()
f3()
f4()

目前公司有条不紊的进行着,但是,以前基础平台的开发人员在写代码时候没有关注验证相关的问题,即:基础平台的提供的功能可以被任何人使用。现在需要对基础平台的所有功能进行重构,为平台提供的所有功能添加验证机制,即:执行功能前,先进行验证。

老大把工作交给 Low B,他是这么做的:

1
跟每个业务部门交涉,每个业务部门自己写代码,调用基础平台的功能之前先验证。诶,这样一来基础平台就不需要做任何修改了。

当天Low B 被开除了...

老大把工作交给 Low BB,他是这么做的:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
############### 基础平台提供的功能如下 ############### 
 
def f1():
    # 验证1
    # 验证2
    # 验证3
    print 'f1'
 
def f2():
    # 验证1
    # 验证2
    # 验证3
    print 'f2'
 
def f3():
    # 验证1
    # 验证2
    # 验证3
    print 'f3'
 
def f4():
    # 验证1
    # 验证2
    # 验证3
    print 'f4'
 
############### 业务部门不变 ############### 
### 业务部门A 调用基础平台提供的功能### 
 
f1()
f2()
f3()
f4()
 
### 业务部门B 调用基础平台提供的功能 ### 
 
f1()
f2()
f3()
f4()

过了一周 Low BB 被开除了...

老大把工作交给 Low BBB,他是这么做的:

1
只对基础平台的代码进行重构,其他业务部门无需做任何修改
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
############### 基础平台提供的功能如下 ############### 
 
def check_login():
    # 验证1
    # 验证2
    # 验证3
    pass
 
 
def f1():
     
    check_login()
 
    print 'f1'
 
def f2():
     
    check_login()
 
    print 'f2'
 
def f3():
     
    check_login()
 
    print 'f3'
 
def f4():
     
    check_login()
     
    print 'f4'

老大看了下Low BBB 的实现,嘴角漏出了一丝的欣慰的笑,语重心长的跟Low BBB聊了个天:

老大说:

写代码要遵循开发封闭原则,虽然在这个原则是用的面向对象开发,但是也适用于函数式编程,简单来说,它规定已经实现的功能代码不允许被修改,但可以被扩展,即:

  • 封闭:已实现的功能代码块

  • 开放:对扩展开发

如果将开放封闭原则应用在上述需求中,那么就不允许在函数 f1 、f2、f3、f4的内部进行修改代码,老板就给了Low BBB一个实现方案:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
def w1(func):
    def inner():
        # 验证1
        # 验证2
        # 验证3
        return func()
    return inner
  
@w1
def f1():
    print 'f1'
@w1
def f2():
    print 'f2'
@w1
def f3():
    print 'f3'
@w1
def f4():
    print 'f4'

对于上述代码,也是仅仅对基础平台的代码进行修改,就可以实现在其他人调用函数 f1 f2 f3 f4 之前都进行【验证】操作,并且其他业务部门无需做任何操作。

Low BBB心惊胆战的问了下,这段代码的内部执行原理是什么呢?

老大正要生气,突然Low BBB的手机掉到地上,恰恰屏保就是Low BBB的女友照片,老大一看一紧一抖,喜笑颜开,交定了Low BBB这个朋友。详细的开始讲解了:

单独以f1为例:

1
2
3
4
5
6
7
8
9
10
11
def w1(func):
    def inner():
        # 验证1
        # 验证2
        # 验证3
        return func()
    return inner
  
@w1
def f1():
    print 'f1'

当写完这段代码后(函数未被执行、未被执行、未被执行),python解释器就会从上到下解释代码,步骤如下:

  1. def w1(func):  ==>将w1函数加载到内存

  2. @w1

没错,从表面上看解释器仅仅会解释这两句代码,因为函数在没有被调用之前其内部代码不会被执行。

从表面上看解释器着实会执行这两句,但是 @w1 这一句代码里却有大文章,@函数名 是python的一种语法糖。

如上例@w1内部会执行一下操作:

  • 执行w1函数,并将 @w1 下面的 函数 作为w1函数的参数,即:@w1 等价于 w1(f1)
    所以,内部就会去执行:
        def inner:
            #验证
            return f1()   # func是参数,此时 func 等于 f1
        return inner     # 返回的 inner,inner代表的是函数,非执行函数
    其实就是将原来的 f1 函数塞进另外一个函数中

  • 将执行完的 w1 函数返回值赋值给@w1下面的函数的函数名
    w1函数的返回值是:
       def inner:
            #验证
            return 原来f1()  # 此处的 f1 表示原来的f1函数
    然后,将此返回值再重新赋值给 f1,即:
    新f1 = def inner:
                #验证
                return 原来f1() 
    所以,以后业务部门想要执行 f1 函数时,就会执行 新f1 函数,在 新f1 函数内部先执行验证,再执行原来的f1函数,然后将 原来f1 函数的返回值 返回给了业务调用者。
    如此一来, 即执行了验证的功能,又执行了原来f1函数的内容,并将原f1函数返回值 返回给业务调用着

Low BBB 你明白了吗?要是没明白的话,我晚上去你家帮你解决吧!!!

先把上述流程看懂,之后还会继续更新...

3、问答时间

问题:被装饰的函数如果有参数呢?

1
2
3
4
5
6
7
8
9
10
11
12
#一个参数
def w1(func):
    def inner(arg):
        # 验证1
        # 验证2
        # 验证3
        return func(arg)
    return inner
 
@w1
def f1(arg):
    print 'f1'
1
2
3
4
5
6
7
8
9
10
11
12
#两个参数
def w1(func):
    def inner(arg1,arg2):
        # 验证1
        # 验证2
        # 验证3
        return func(arg1,arg2)
    return inner
 
@w1
def f1(arg1,arg2):
    print 'f1'
1
2
3
4
5
6
7
8
9
10
11
12
#三个参数
def w1(func):
    def inner(arg1,arg2,arg3):
        # 验证1
        # 验证2
        # 验证3
        return func(arg1,arg2,arg3)
    return inner
 
@w1
def f1(arg1,arg2,arg3):
    print 'f1'

问题:可以装饰具有处理n个参数的函数的装饰器?

1
2
3
4
5
6
7
8
9
10
11
def w1(func):
    def inner(*args,**kwargs):
        # 验证1
        # 验证2
        # 验证3
        return func(*args,**kwargs)
    return inner
  
@w1
def f1(arg1,arg2,arg3):
    print 'f1'

问题:一个函数可以被多个装饰器装饰吗?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
def w1(func):
    def inner(*args,**kwargs):
        # 验证1
        # 验证2
        # 验证3
        return func(*args,**kwargs)
    return inner
  
def w2(func):
    def inner(*args,**kwargs):
        # 验证1
        # 验证2
        # 验证3
        return func(*args,**kwargs)
    return inner
  
  
@w1
@w2
def f1(arg1,arg2,arg3):
    print 'f1'

问题:还有什么更吊的装饰器吗?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#!/usr/bin/env python
#coding:utf-8
   
def Before(request,kargs):
    print 'before'
       
def After(request,kargs):
    print 'after'
   
   
def Filter(before_func,after_func):
    def outer(main_func):
        def wrapper(request,kargs):
               
            before_result = before_func(request,kargs)
            if(before_result != None):
                return before_result;
               
            main_result = main_func(request,kargs)
            if(main_result != None):
                return main_result;
               
            after_result = after_func(request,kargs)
            if(after_result != None):
                return after_result;
               
        return wrapper
    return outer
       
@Filter(Before, After)
def Index(request,kargs):
    print 'index'


好啦,至此, 面试时任何装饰器的问题都 难不到道 你啦!


更多问题,加Alex 的专属群讨论,

PYTHON自动化交流1

255012808 

Python——编写类装饰器

本文介绍了Python编写类装饰器的几个示例,包括,单体类、跟踪对象接口以及实现私有属性private...
  • ggGavin
  • ggGavin
  • 2016年03月18日 15:40
  • 8415

Python 装饰器装饰类中的方法

title: Python 装饰器装饰类中的方法 comments: true date: 2017-04-17 20:44:31 tags: ['Python', 'Decorate'] c...
  • hesi9555
  • hesi9555
  • 2017年04月18日 09:54
  • 1901

Python多个装饰器的顺序

原文链接:http://www.cnblogs.com/nisen/p/6193426.html?utm_source=itdadao&utm_medium=referral 装饰器是Pyth...
  • jyhhhhhhh
  • jyhhhhhhh
  • 2017年01月20日 02:51
  • 1821

Python中装饰器的应用

  • 2014年11月08日 00:18
  • 77KB
  • 下载

Python装饰器decoder.py

  • 2017年11月15日 14:28
  • 7KB
  • 下载

python装饰器的理解

python的语法很简单,但也有一些会让初学者困惑的东西,比如说装饰器,就困惑了我一段事件。现在对python逐步熟悉后,返回来谈谈对装饰器的理解吧。         关于装饰器解释:增加一个函数的的...
  • a447685024
  • a447685024
  • 2016年11月11日 12:43
  • 1008

Python 内置装饰器

内置的装饰器​ 内置的装饰器和普通的装饰器原理是一样的,只不过返回的不是函数,而是类对象,所以更难理解一些。@property​ 在了解这个装饰器前,你需要知道在不使用装饰器怎...
  • Liveor_Die
  • Liveor_Die
  • 2018年01月02日 17:19
  • 269

Python 装饰器

装饰器​ 装饰器是程序开发中经常会用到的一个功能,用好了装饰器,开发效率如虎添翼,所以这也是Python面试中必问的问题,但对于好多初次接触这个知识的人来讲,这个功能有点绕,自学时直接绕...
  • Liveor_Die
  • Liveor_Die
  • 2018年01月02日 17:15
  • 424

0基础学Python(6) —— 关于装饰器

#第一步:基本函数 def cat():     print('小猫咪喵喵喵') cat() #第二步:扩展功能(不能直接修改原来的函数) def zhuangshi():     print('...
  • Z_Pytone07
  • Z_Pytone07
  • 2017年12月22日 21:14
  • 31

Python闭包与装饰器

Python闭包与装饰器 一、装饰器概念       装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值也是一个函数对象。装饰器接...
  • guyuealian
  • guyuealian
  • 2016年10月11日 10:18
  • 768
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:python 装饰器
举报原因:
原因补充:

(最多只允许输入30个字)