huffman编解码源代码

转载 2012年04月07日 15:54:24

#include<stdio.h>

#include<malloc.h>

#include<string.h>

#include<stdlib.h>

typedef struct

{

         int weight;

         char ch;

         int parent,lchild,rchild;

}HTNode,*HuffmanTree;

typedef struct

{

char ch;

char *chs;

}HuffmanCode;

typedef struct

{

char ch;

int weight;

}sw;
//
typedef struct

{

HuffmanTree HT;

HuffmanCode *HC;

}huf;

void select(HTNode * HT,int n,int *n1,int *n2)//找出两个权值较小的节点,n1>n2

{

         int i=1;       
   int n3;
         while(HT[i].parent!=0)

         i++;

         *n1=i;

          i++;

         while(HT[i].parent!=0)         i++;

         *n2=i;

         if(HT[*n1].weight<HT[*n2].weight)

         {         n3=*n1;*n1=*n2;*n2=n3;}

         for(i++;i<=n;i++)

         {

           if(HT[i].parent==0)

           {         if(HT[i].weight<HT[*n1].weight)

         *n1=i;

             // else if(HT[i].weight<HT[*n2].weight)

        // *n2=i;

           }

         }

}


huf * HuffmanCoding(HuffmanTree HT,HuffmanCode *HC,sw *w,int n,huf *HUF)//输入参数:w,n;输出参数:HUF,HT,HC;HC中保存的是每个字符对应的编码;
                                                                    //HT是构造的HUFFMAN树的结构
{int m,i,s1,s2,start,c,f;
HuffmanTree p;
char *cd;
if(n<=1) return 0;
m=2*n-1;
HT=(HuffmanTree)malloc((m+1)*sizeof(HTNode));
for(p=HT+1,i=1;i<=n;i++,p++,w++)
{p->weight=w->weight;p->ch=w->ch;p->parent=0;p->lchild=0;p->rchild=0;}
for(;i<=m;i++,p++)
{p->weight=0;p->ch='^';p->parent=0;p->lchild=0;p->rchild=0;}
for(i=n+1;i<=m;i++)
{

           select(HT,i-1,&s1,&s2);

           HT[s1].parent=i;HT[s2].parent=i;

           HT[i].lchild=s1;HT[i].rchild=s2;

           HT[i].weight=HT[s1].weight+HT[s2].weight;
}
HC=(HuffmanCode *)malloc((n+1)*sizeof(char));
cd=(char *)malloc(n*sizeof(char));
cd[n-1]='\0';
for(i=1;i<=n;i++)//分别对每一个叶子节点进行编码
{       
        start=n-1;

           for(c=i,f=HT[i].parent;f!=0;c=f,f=HT[f].parent)

           if(HT[f].lchild==c)cd[--start]='0';

           else cd[--start]='1';

           HC[i].ch=HT[i].ch;

           HC[i].chs=(char*)malloc((n-start)*sizeof(char));

           strcpy(HC[i].chs,&cd[start]);

           printf("%c %-10s\n",HC[i].ch,HC[i].chs);
}
HUF->HT=HT;
HUF->HC=HC;
return HUF;
}

 

char *       convert(char *chars,char *chars1,HuffmanCode *hc,int n)
{

        char *p=chars; int i;

        strcpy(chars1,"");


        while(*p)

        {

          i=1;       
    while(hc[i].ch!=*p&&i<=n) i++;
          strcat(chars1,hc[i].chs);     
    p++;

        }
printf("the chars translate are:%s\n",chars1);
return chars1;
}

 


void transcode(HuffmanTree ht,char *chars2,char*chars3) //chars2输入,chars3输出译码过程
{

        int i=1,p; char *q=chars2;char *r=chars3;


        while(ht[i].parent!=0)        i++;

         p=i;//p指向根结点


        while(*q)

        {

          while(ht[p].lchild!=0 && *q)

          {

            if(*q=='0')

             p=ht[p].lchild;

            else p=ht[p].rchild;

            q++;

          }

          if(ht[p].lchild==0)

          {*r=ht[p].ch;r++;}

          p=i;


        }

       *r='\0';

        printf("the chars are:");

        puts(chars3);
}

 

void input(int *n,sw *w)

{

         int i;

printf("input the mount of char:");   /*输入字符的数目*/

scanf("%d",n);

    

for(i=1;i<=*n;i++,w++)

{printf("input the %dth char and weight:",i); /*输入每个节点的字符和出现的次数*/

fflush(stdin);

scanf("%c%d",&w->ch,&w->weight);

}


}

void main()

{HTNode HT;

HuffmanCode HC,*hc;

HuffmanTree ht;

huf *HUF,huf2;

int n;

sw w[40];

char ch,inchar[500],outchar[1000];

char *abc;

char *p=inchar;

input(&n,w);

HUF=HuffmanCoding(&HT,&HC,w,n,&huf2);

printf("input chars to translate and end with '#':");

fflush(stdin);/*清除流,解决输入干扰*/

ch=getchar();

while(ch!='#')

{*p=ch;

p++;

ch=getchar();

}

*p='\0';

hc=HUF->HC;

ht=HUF->HT;

abc=convert(inchar,outchar,hc,n);

transcode(ht,abc,outchar);

getchar();

getchar();

}

 

相关文章推荐

Huffman字节编解码类

数据压缩原理 实验三 Huffman编解码算法实现与压缩效率分析

数据压缩原理 实验三 Huffman编解码算法实现与压缩效率分析

Huffman编解码完全注释

Huffman编解码完全注释 /* * huffman - Encode/Decode files using Huffman encoding. * Copyright (C) 200...

Huffman编解码

一.背景知识及相关公式 1.信源熵 信源熵是信息的度量单位,一般用H表示,单位是比特,对于任意一个随机变量,它的熵定义为,变量的不确定性越大,熵也就越大。 2.Huffman编码 (1)Huffma...

实验三 Huffman编解码算法实现与压缩效率分析

一、Huffman编解码原理

Huffman编解码

一、背景知识及相关公式 1、  熵,又称为“信息熵” (Entropy) 1) 在信息论中,熵是信息的度量单位。信息论的创始人 Shannon 在其著作《通信的数学理论》中提出了建立在概率统计模型上的...

Huffman 编解码--这回是正常树~

严蔚敏教材上的Huffman coding 稍微有点改动  // Huffman 编码 #include #include #include typedef struct _Huffma...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)