51nod 算法马拉松12

博客详细介绍了51nod算法马拉松的第12题,题目要求找到区间内的第K大元素。博主分享了采用二分查找结合滑动窗口的方法来解决此问题,同时提到了在比赛中尝试将问题转化为求最小的n*(n-1)-k+1元素,但在调整实现上遇到困难。此外,还探讨了利用堆和权值线段树作为贪心算法策略的数据结构应用。
摘要由CSDN通过智能技术生成

题解在这里


第K大区间:二分后滑动窗口扫一下;

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=100005;
typedef long long ll;
int a[maxn],n,vis[maxn],b[maxn],top=1,val[maxn],c[maxn],cnt[maxn],mx=0;
ll k,ans;
void ins(int x){cnt[c[x]]--;c[x]++;cnt[c[x]]++;mx=max(mx,c[x]);
}
void del(int x){cnt[c[x]]--;c[x]--;cnt[c[x]]++;if(!cnt[mx])mx--;
}
bool ok(int v){memset(c,0,sizeof(c));memset(cnt,0,sizeof(cnt));mx=0;
    int l=1,r;ll ans=0;
    for(r=1;r<=n;r++){ins(val[r]);
        for(;;){
            del(val[l]);
            if(mx<v){ins(val[l]);break;}
            l++;
        }
        if(mx>=v)ans+=l;
    }
    return ans>=k;
}
bool cmp(int x,int y){return a[x]<a[y];}
int main(){//freopen("in.in","r",stdin);
    scanf("%d%lld",&n,&k);
    for(int i=1;i<=n;i++){
    scanf("%d",&a[i]);b[i]=i;}
    sort(b+1,b+1+n,cmp);
    val[b[1]]=1;
    for(int i=2;i<=n;i++){
        if(a[b[i]]==a[b[i-1]])val[b[i]]=top;else val[b[i]]=++top;
     }
    int l=0,r=maxn;
    while(l<r){
        int mid=(l+r+1)>>1;
        if(ok(mid))l=mid;
        else r=mid-1;
    }
    printf("%d",l);
    return 0;
}

比赛时我把k大转成了n*(n-1)-k+1小,但就是调不好…


逛街
很容易想到贪心算法,关键是维护数据的数据结构的应用;
这里使用堆与权值线段树维护;

#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
using namespace std;
const int maxn=100005;
const int maxnode=4000000;
typedef long long ll;
int read(){char c=getchar();while(c<'0'||c>'9')c=getchar();int ans=0;
for(;c>='0' && c<='9';c=getchar())ans=ans*10+c-'0';
return ans;
}
const int inf=2e9;
int a[maxn],b[maxn],c[maxn],n,k,ch[maxnode][2],sz[maxnode],tot=0,rt=0,ans=0,ok=0;
ll sum[maxnode],T;
priority_queue<int> Q;
void insert(int& o,int l,int r,int p,int val){
    if(!o)o=++tot;
    sz[o]+=val;sum[o]+=p*val;
    if(l==r)return;
        int mid=(l+r)>>1;
        if(p<=mid)insert(ch[o][0],l,mid,p,val);
        else insert(ch[o][1],mid+1,r,p,val);
}
int query(int& o,int l,int r,int k){
    if(!o)return 0;
    if(l==r){return min(sz[o],k/l);}
    int mid=(l+r)>>1;
    if(k<=sum[ch[o][0]])return query(ch[o][0],l,mid,k);
    else return sz[ch[o][0]]+query(ch[o][1],mid+1,r,k-sum[ch[o][0]]);
}
int main(){//freopen("in.in","r",stdin);
    scanf("%d%lld%d",&n,&T,&k);
    rep(i,1,n)a[i]=read();
    rep(i,1,n)b[i]=read();
    rep(i,1,n)c[i]=read();
    ll need=(ll)k*inf;
    rep(i,1,k)Q.push(inf);
    rep(i,1,n){
        if(c[i]==1){
            if(k && b[i]<Q.top()){
                need=need-Q.top()+b[i];
                if(Q.top()<inf)insert(rt,1,1e9,Q.top(),1);
                Q.pop();Q.push(b[i]);
            }
            else insert(rt,1,1e9,b[i],1);
        }
        else insert(rt,1,1e9,b[i],1);
        if(need<=(T-a[i])){ok=1;
            ans=max(ans,k+query(rt,1,1e9,T-a[i]-need));
        }
    }
    printf("%d\n",ok ? ans : -1);
}
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
【6层】4837.9平米六层框架综合办公楼(含计算书、建筑、结构图纸) 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值