关闭

HDU 2563:统计问题【数学】

131人阅读 评论(0) 收藏 举报
分类:

统计问题

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6783    Accepted Submission(s): 4003


Problem Description
在一无限大的二维平面中,我们做如下假设:
1、  每次只能移动一格;
2、  不能向后走(假设你的目的地是“向上”,那么你可以向左走,可以向右走,也可以向上走,但是不可以向下走);
3、  走过的格子立即塌陷无法再走第二次;

求走n步不同的方案数(2种走法只要有一步不一样,即被认为是不同的方案)。
 

Input
首先给出一个正整数C,表示有C组测试数据
接下来的C行,每行包含一个整数n (n<=20),表示要走n步。
 

Output
请编程输出走n步的不同方案总数;
每组的输出占一行。
 

Sample Input
2 1 2
 

Sample Output
3 7
 

a[n]是向上走n步的方法数,b[n]是向左或向右走的方法数,则a[n]=a[n-1]+b[n-1], 

b[n]=2*a[n-1]+b[n-1]因为之前的向上可以走两个方向,而之前的向左或者向右只能继续按照原来的方向走,因为走过的路会消失。

因为f[n]=a[n]+b[n]

f[n]=3*a[n-1]+2*b[n-2]=2*f[n-1]+a[n-1]=2*f[n-1]+f[n-2]

AC-code:

#include<cstdio>
int main()
{
	int t,a[20],b[20],f[20],i,n;
	a[1]=1;b[1]=2;
	f[1]=3;
	for(i=2;i<=20;i++)
	{
		a[i]=a[i-1]+b[i-1];
		b[i]=2*a[i-1]+b[i-1];
		f[i]=a[i]+b[i];
	}
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d",&n);
		printf("%d\n",f[n]);
	}
	return 0;
 } 


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:94933次
    • 积分:4288
    • 等级:
    • 排名:第7059名
    • 原创:345篇
    • 转载:1篇
    • 译文:0篇
    • 评论:26条
    最新评论