POJ 2553:The Bottom of a Graph【强连通】

原创 2015年11月20日 20:56:45

The Bottom of a Graph

Time Limit : 6000/3000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other)
Total Submission(s) : 14   Accepted Submission(s) : 2
Problem Description
We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph.
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1).
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.
 

Input
The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.
 

Output
For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.
 

Sample Input
3 3 1 3 2 3 3 1 2 1 1 2 0
 

Sample Output
1 3 2
  • 题目大意      若节点V所能到达的点{w},都能反过来到达v,那我们称v是sink。  
  • 强连通+缩点  
  • 就是求极大连通分量,最后统计出度为0的点,排序后输出初度为0的分量包含的每一个点。
  • AC——code:
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include<vector>
    #include<stack>
    #define min(a,b) a>b?b:a
    #define MAXN 5000
    using namespace std;
    int dfn[MAXN],low[MAXN],sccno[MAXN],instack[MAXN],head[MAXN];
    int num,scc_cnt,dfs_clock;
    vector<int>scc[MAXN];
    stack<int>s;
    struct Eage
    {
    	int from,to,next;
    }eage[MAXN*MAXN];
    void add(int a,int b)
    {
    	Eage e={a,b,head[a]};
    	eage[num]=e;
    	head[a]=num++;
    }
    
    void tarjan(int u)
    {
    	int v;
    	low[u]=dfn[u]=++dfs_clock;
    	instack[u]=1;
    	s.push(u);
    	for(int i=head[u];i!=-1;i=eage[i].next)
    	{
    		v=eage[i].to;
    		if(!dfn[v])
    		{
    			tarjan(v);
    			low[u]=min(low[v],low[u]);
    		}
    		else if(instack[v])
    			low[u]=min(dfn[v],low[u]);
    	}
    	if(low[u]==dfn[u])
    	{
    		scc_cnt++;
    		scc[scc_cnt].clear();
    		do
    		{
    			v=s.top();
    			s.pop();
    			instack[v]=0;
    			sccno[v]=scc_cnt;
    			scc[scc_cnt].push_back(v);
    		}while(u!=v);
    	}
    }
    
    int in[MAXN],out[MAXN];
    
    int main()
    {
    	int n,m,a,b,x,i,j;
    	while(scanf("%d%d",&n,&m),n)
    	{
    		memset(head,-1,sizeof(head));
    		num=0;
    		while(m--)
    		{
    			scanf("%d%d",&a,&b);
    			add(a,b);
    		}
    		scc_cnt=dfs_clock=0;
    		memset(dfn,0,sizeof(dfn));
    		memset(low,0,sizeof(low));
    		memset(instack,0,sizeof(instack));
    		memset(sccno,0,sizeof(sccno));
    		for(i=1;i<=n;i++)
    			if(!dfn[i])
    				tarjan(i);
    		memset(in,0,sizeof(in));
    		for(i=1;i<=n;i++)
    		{
    			for(j=head[i];j!=-1;j=eage[j].next)
    				if(sccno[i]!=sccno[eage[j].to])
    				{
    					in[sccno[i]]=1;
    					break;
    				}
    		}
    		int sum=0;
    		for(i=1;i<=scc_cnt;i++)
    			if(!in[i])
    			{
    				for(j=1;j<=n;j++)
    					if(sccno[j]==i)
    						out[sum++]=j;
    			}
    		sort(out,out+sum);
    		if(sum!=0)
    		{
    			for(i=0;i<sum-1;i++)
    				printf("%d ",out[i]);
    			printf("%d\n",out[sum-1]);
    		}
    		else
    		{
    			printf("\n");
    			continue;
    		}
    	}
    	return 0;
    }



  • 题目大意      若节点V所能到达的点{w},都能反过来到达v,那我们称v是sink。  
  • 强连通+缩点  
  • 就是求极大连通分量,最后统计出度为0的点,排序后输出初度为0的分量包含的每一个点。
  • 版权声明:转载请注明出处~

    相关文章推荐

    POJ 2553 The Bottom of a Graph (强连通分量)

    题目地址:POJ 2553 题目意思不好理解。题意是:G图中从v可达的所有点w,也都可以达到v,这样的v称为sink。然后升序输出所有的sink。 对于一个强连通分量来说,所有的点都符合这一条件,...

    POJ 2553——The Bottom of a Graph(强连通分量)

    The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 10222 ...

    POJ 2553 The Bottom of a Graph(强连通分量)

    POJ 2553 The Bottom of a Graph(强连通分量) http://poj.org/problem?id=2553 题意:给你一个有向图,要你输出图的bottom点.bottom...

    poj2553——The Bottom of a Graph(强连通分量)

    DescriptionWe will use the following (standard) definitions from graph theory. Let V be a nonempty a...

    POJ2553 The Bottom of a Graph 强连通 tarjan

    题意:此题最难的部分即是理解题意。 注意要求得点的定义为:所有这个点能到达的点都能到达这个点。 思路: 强连通,缩点,找出出度为0的强连通分量集合,就是要求得点集合。 #inc...
    • wuyanyi
    • wuyanyi
    • 2011年10月30日 19:28
    • 361

    poj 2553 The Bottom of a Graph 【强连通图中出度为0点】

    题目:poj 2553 The Bottom of a Graph  题意:大概题意是给出一个有向图,求强连通缩点以后出度为0的点。 分析:入门题目,先强连通缩点,然后表示出度为0...

    poj2553The Bottom of a Graph(强连通+缩点)

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 7699   Acce...

    POJ-2553 The Bottom of a Graph (强连通分量[Tarjan])

    注意理解题意即可(只有理解了,才能看懂样例...) 满足题意的v点有两种情况: ①对于任一点w,v可达w,且w可达v,即v、w互相可达,满足该情况的点在同一个强连通分量中(且该强连通分量不与其他点连通...

    poj2553 The Bottom of a Graph--Kosaraju算法 & 缩点 & 强连通分量

    原题链接:http://poj.org/problem?id=2553 题意:n个点,m对点的关系,定义link点:一个点u所能到达的点,反过来都能到达u,那么点u就是link点。升序输出所...
    • LaoJiu_
    • LaoJiu_
    • 2016年09月10日 14:38
    • 231

    POJ 2553 The Bottom of a Graph 强连通分量+缩点 tarjan or kosaraju

    题目的意思是求有向图中满足“自己可达的顶点都能到达自己”的顶点个数 显然,在一个强连通分量中,每个点都符合要求,但是 如果强连通分量中有某个点跟外面的某个点相连了,这个强连通分量就不符合要求了,很显...
    内容举报
    返回顶部
    收藏助手
    不良信息举报
    您举报文章:POJ 2553:The Bottom of a Graph【强连通】
    举报原因:
    原因补充:

    (最多只允许输入30个字)