187人阅读 评论(0)

# The Bottom of a Graph

##### Total Submission(s) : 14   Accepted Submission(s) : 2
Problem Description
We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph.
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1).
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.

Input
The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.

Output
For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.

Sample Input
3 3
1 3 2 3 3 1
2 1
1 2
0


Sample Output
1 3
2

#include<algorithm>
#include<cstring>
#include<vector>
#include<stack>
#define min(a,b) a>b?b:a
#define MAXN 5000
using namespace std;
int num,scc_cnt,dfs_clock;
vector<int>scc[MAXN];
stack<int>s;
struct Eage
{
int from,to,next;
}eage[MAXN*MAXN];
{
eage[num]=e;
}

void tarjan(int u)
{
int v;
low[u]=dfn[u]=++dfs_clock;
instack[u]=1;
s.push(u);
{
v=eage[i].to;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[v],low[u]);
}
else if(instack[v])
low[u]=min(dfn[v],low[u]);
}
if(low[u]==dfn[u])
{
scc_cnt++;
scc[scc_cnt].clear();
do
{
v=s.top();
s.pop();
instack[v]=0;
sccno[v]=scc_cnt;
scc[scc_cnt].push_back(v);
}while(u!=v);
}
}

int in[MAXN],out[MAXN];

int main()
{
int n,m,a,b,x,i,j;
while(scanf("%d%d",&n,&m),n)
{
num=0;
while(m--)
{
scanf("%d%d",&a,&b);
}
scc_cnt=dfs_clock=0;
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(instack,0,sizeof(instack));
memset(sccno,0,sizeof(sccno));
for(i=1;i<=n;i++)
if(!dfn[i])
tarjan(i);
memset(in,0,sizeof(in));
for(i=1;i<=n;i++)
{
if(sccno[i]!=sccno[eage[j].to])
{
in[sccno[i]]=1;
break;
}
}
int sum=0;
for(i=1;i<=scc_cnt;i++)
if(!in[i])
{
for(j=1;j<=n;j++)
if(sccno[j]==i)
out[sum++]=j;
}
sort(out,out+sum);
if(sum!=0)
{
for(i=0;i<sum-1;i++)
printf("%d ",out[i]);
printf("%d\n",out[sum-1]);
}
else
{
printf("\n");
continue;
}
}
return 0;
}
• 题目大意      若节点V所能到达的点{w}，都能反过来到达v，那我们称v是sink。
• 强连通+缩点
• 就是求极大连通分量，最后统计出度为0的点，排序后输出初度为0的分量包含的每一个点。
• 0
0
查看评论
个人资料
• 访问：142722次
• 积分：4763
• 等级：
• 排名：第7206名
• 原创：346篇
• 转载：1篇
• 译文：0篇
• 评论：37条
最新评论