关闭

POJ 2553:The Bottom of a Graph【强连通】

标签: POJ强连通图论排序
114人阅读 评论(0) 收藏 举报
分类:

The Bottom of a Graph

Time Limit : 6000/3000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other)
Total Submission(s) : 14   Accepted Submission(s) : 2
Problem Description
We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph.
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1).
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.
 

Input
The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.
 

Output
For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.
 

Sample Input
3 3 1 3 2 3 3 1 2 1 1 2 0
 

Sample Output
1 3 2
  • 题目大意      若节点V所能到达的点{w},都能反过来到达v,那我们称v是sink。  
  • 强连通+缩点  
  • 就是求极大连通分量,最后统计出度为0的点,排序后输出初度为0的分量包含的每一个点。
  • AC——code:
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include<vector>
    #include<stack>
    #define min(a,b) a>b?b:a
    #define MAXN 5000
    using namespace std;
    int dfn[MAXN],low[MAXN],sccno[MAXN],instack[MAXN],head[MAXN];
    int num,scc_cnt,dfs_clock;
    vector<int>scc[MAXN];
    stack<int>s;
    struct Eage
    {
    	int from,to,next;
    }eage[MAXN*MAXN];
    void add(int a,int b)
    {
    	Eage e={a,b,head[a]};
    	eage[num]=e;
    	head[a]=num++;
    }
    
    void tarjan(int u)
    {
    	int v;
    	low[u]=dfn[u]=++dfs_clock;
    	instack[u]=1;
    	s.push(u);
    	for(int i=head[u];i!=-1;i=eage[i].next)
    	{
    		v=eage[i].to;
    		if(!dfn[v])
    		{
    			tarjan(v);
    			low[u]=min(low[v],low[u]);
    		}
    		else if(instack[v])
    			low[u]=min(dfn[v],low[u]);
    	}
    	if(low[u]==dfn[u])
    	{
    		scc_cnt++;
    		scc[scc_cnt].clear();
    		do
    		{
    			v=s.top();
    			s.pop();
    			instack[v]=0;
    			sccno[v]=scc_cnt;
    			scc[scc_cnt].push_back(v);
    		}while(u!=v);
    	}
    }
    
    int in[MAXN],out[MAXN];
    
    int main()
    {
    	int n,m,a,b,x,i,j;
    	while(scanf("%d%d",&n,&m),n)
    	{
    		memset(head,-1,sizeof(head));
    		num=0;
    		while(m--)
    		{
    			scanf("%d%d",&a,&b);
    			add(a,b);
    		}
    		scc_cnt=dfs_clock=0;
    		memset(dfn,0,sizeof(dfn));
    		memset(low,0,sizeof(low));
    		memset(instack,0,sizeof(instack));
    		memset(sccno,0,sizeof(sccno));
    		for(i=1;i<=n;i++)
    			if(!dfn[i])
    				tarjan(i);
    		memset(in,0,sizeof(in));
    		for(i=1;i<=n;i++)
    		{
    			for(j=head[i];j!=-1;j=eage[j].next)
    				if(sccno[i]!=sccno[eage[j].to])
    				{
    					in[sccno[i]]=1;
    					break;
    				}
    		}
    		int sum=0;
    		for(i=1;i<=scc_cnt;i++)
    			if(!in[i])
    			{
    				for(j=1;j<=n;j++)
    					if(sccno[j]==i)
    						out[sum++]=j;
    			}
    		sort(out,out+sum);
    		if(sum!=0)
    		{
    			for(i=0;i<sum-1;i++)
    				printf("%d ",out[i]);
    			printf("%d\n",out[sum-1]);
    		}
    		else
    		{
    			printf("\n");
    			continue;
    		}
    	}
    	return 0;
    }



  • 题目大意      若节点V所能到达的点{w},都能反过来到达v,那我们称v是sink。  
  • 强连通+缩点  
  • 就是求极大连通分量,最后统计出度为0的点,排序后输出初度为0的分量包含的每一个点。
  • 0
    0

    查看评论
    * 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
      个人资料
      • 访问:94932次
      • 积分:4288
      • 等级:
      • 排名:第7059名
      • 原创:345篇
      • 转载:1篇
      • 译文:0篇
      • 评论:26条
      最新评论