计算幂的一种高效方法

public double pow(double x, int n)
{
if(n==0)
return 1.0;
if(n<0)
return 1.0/pow(x,-n);
return x*pow(x,n-1);
}

double pow(double x, int n)
{
if(n==0)
return 1.0;
if(n<0)
return 1.0/pow(x,-n);
double half = pow(x,n>>1);
if(n%2==0)
return half*half;
else
return half*half*x;
}

Consider the binary representation of n. For example, if it is "10001011", thenx^n = x^(1+2+8+128) = x^1 * x^2 * x^8 * x^128. Thus, we don't want to loop n times to calculate x^n. To speed up, we loop through each bit, if the i-th bit is 1, then we add x^(1 << i) to the result. Since (1 << i) is a power of 2, x^(1<<(i+1)) = square(x^(1<<i)). The loop executes for a maximum of log(n) times.

 public double pow(double x, int n) {
if(n == 0)
return 1.0;
if(n < 0)
{
if(n == Integer.MIN_VALUE)
return 1.0/((pow(x,Integer.MAX_VALUE)*x));
else
return 1.0/pow(x, -n);
}
double result = 1.0;
for(;n>0;x*=x,n>>=1)
{
if((n&1) > 0)
result *= x;
}
return result;

• 本文已收录于以下专栏：

举报原因： 您举报文章：计算幂的一种高效方法 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)