OpenCV中IplImage* ,CvMat 与新版OpenCV中 Mat类型的相互转化

转载 2013年12月03日 10:53:02

你可以使用 IplImageCvMat 操作符来转换 Mat 对象。在C接口中,你习惯于使用指针,但此处将不再需要。在C++接口中,我们大多数情况下都是用 Mat 对象。此对象可通过简单的赋值操作转换为 IplImageCvMat 。示例如下:

Mat I;
IplImage pI = I;
CvMat    mI = I;

现在,如果你想获取指针,转换就变得麻烦一点。编译器将不能自动识别你的意图,所以你需要明确指出你的目的。可以通过调用 IplImage CvMat 操作符来获取他们的指针。我们可以用 & 符号获取其指针如下:

Mat I;
IplImage* pI     = &I.operator IplImage();
CvMat* mI        =  &I.operator CvMat();

来自C接口最大的抱怨是它将所有内存管理工作交给你来做。你需要知道何时可以安全释放不再使用的对象,并且确定在程序结束之前释放它,否则就会造成讨厌的内存泄露。为了绕开这一问题,OpenCV引进了一种智能指针。它将自动释放不再使用的对象。使用时,指针将被声明为 Ptr 模板的特化:

Ptr<IplImage> piI = &I.operator IplImage();

将C接口的数据结构转换为 Mat 时,可将其作为构造函数的参数传入,例如:

Mat K(piL), L;
L = Mat(pI);

实例学习

现在,你已经学习了最基本的知识。 这里 你将会看到一个混合使用C接口和C++接口的例子。你也可以在可以再OpenCV的代码库中的sample目录中找到此文件 samples/cpp/tutorial_code/core/interoperability_with_OpenCV_1/interoperability_with_OpenCV_1.cpp 。为了进一步帮助你认清其中区别,程序支持两种模式:C和C++混合,以及纯C++。如果你宏定义了 DEMO_MIXED_API_USE ,程序将按第一种模式编译。程序的功能是划分颜色平面,对其进行改动并最终将其重新合并。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include <stdio.h>
#include <iostream>

#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>

using namespace cv;  // The new C++ interface API is inside this namespace. Import it.
using namespace std;
#define DEMO_MIXED_API_USE 

int main( int argc, char** argv )
{
    const char* imagename = argc > 1 ? argv[1] : "lena.jpg";

#ifdef DEMO_MIXED_API_USE
    Ptr<IplImage> IplI = cvLoadImage(imagename);      // Ptr<T> is safe ref-counting pointer class
    if(IplI.empty())
    {
        cerr << "Can not load image " <<  imagename << endl;
        return -1;
    }
    Mat I(IplI); // Convert to the new style container. Only header created. Image not copied.    
#else
    Mat I = imread(imagename);        // the newer cvLoadImage alternative, MATLAB-style function
    if( I.empty() )                   // same as if( !I.data )
    {
        cerr << "Can not load image " <<  imagename << endl;
        return -1;
    }
#endif

在此,你可一看到新的结构再无指针问题,哪怕使用旧的函数,并在最后结束时将结果转换为 Mat 对象。

1
2
3
4
5
6
    // convert image to YUV color space. The output image will be created automatically. 
    Mat I_YUV;
    cvtColor(I, I_YUV, CV_BGR2YCrCb); 

    vector<Mat> planes;    // Use the STL's vector structure to store multiple Mat objects 
    split(I_YUV, planes);  // split the image into separate color planes (Y U V)

因为我们打算搞乱图像的亮度通道,所以首先将图像由默认的RGB颜色空间转为YUV颜色空间,然后将其划分为独立颜色平面(Y,U,V)。第一个例子中,我们对每一个平面用OpenCV中三个主要图像扫描算法(C []操作符,迭代,单独元素访问)中的一个进行处理。在第二个例子中,我们给图像添加一些高斯噪声,然后依据一些准则融合所有通道。

运用扫描算法的代码如下:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
    // Method 1. process Y plane using an iterator
    MatIterator_<uchar> it = planes[0].begin<uchar>(), it_end = planes[0].end<uchar>();
    for(; it != it_end; ++it)
    {
        double v = *it * 1.7 + rand()%21 - 10;
        *it = saturate_cast<uchar>(v*v/255);
    }
    
    for( int y = 0; y < I_YUV.rows; y++ )
    {
        // Method 2. process the first chroma plane using pre-stored row pointer.
        uchar* Uptr = planes[1].ptr<uchar>(y);
        for( int x = 0; x < I_YUV.cols; x++ )
        {
            Uptr[x] = saturate_cast<uchar>((Uptr[x]-128)/2 + 128);
            
            // Method 3. process the second chroma plane using individual element access
            uchar& Vxy = planes[2].at<uchar>(y, x);
            Vxy =        saturate_cast<uchar>((Vxy-128)/2 + 128);
        }
    }

此处可看到,我们可以以三种方式遍历图像的所有像素:迭代器,C指针和单独元素访问方式你可在 OpenCV如何扫描图像、利用查找表和计时 中获得更深入的了解。从旧的函数名转换新版本非常容易,仅需要删除 cv 前缀,并且使用 Mat 数据结构。下面的例子中使用了加权加法:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
    Mat noisyI(I.size(), CV_8U);           // Create a matrix of the specified size and type
    
    // Fills the matrix with normally distributed random values (around number with deviation off).
    // There is also randu() for uniformly distributed random number generation
    randn(noisyI, Scalar::all(128), Scalar::all(20)); 
    
    // blur the noisyI a bit, kernel size is 3x3 and both sigma's are set to 0.5
    GaussianBlur(noisyI, noisyI, Size(3, 3), 0.5, 0.5); 

    const double brightness_gain = 0;
    const double contrast_gain = 1.7;

#ifdef DEMO_MIXED_API_USE
    // To pass the new matrices to the functions that only work with IplImage or CvMat do:
    // step 1) Convert the headers (tip: data will not be copied).
    // step 2) call the function   (tip: to pass a pointer do not forget unary "&" to form pointers)
    
    IplImage cv_planes_0 = planes[0], cv_noise = noisyI;    
    cvAddWeighted(&cv_planes_0, contrast_gain, &cv_noise, 1, -128 + brightness_gain, &cv_planes_0);
#else
    addWeighted(planes[0], contrast_gain, noisyI, 1, -128 + brightness_gain, planes[0]);
#endif
    
    const double color_scale = 0.5;
    // Mat::convertTo() replaces cvConvertScale. 
    // One must explicitly specify the output matrix type (we keep it intact - planes[1].type())
    planes[1].convertTo(planes[1], planes[1].type(), color_scale, 128*(1-color_scale));

    // alternative form of cv::convertScale if we know the datatype at compile time ("uchar" here).
    // This expression will not create any temporary arrays ( so should be almost as fast as above)
    planes[2] = Mat_<uchar>(planes[2]*color_scale + 128*(1-color_scale));

    // Mat::mul replaces cvMul(). Again, no temporary arrays are created in case of simple expressions.
    planes[0] = planes[0].mul(planes[0], 1./255);

正如你所见,变量 planes 也是 Mat 类型的。无论如何,将 Mat 转换为 IplImage 都可通过简单的赋值操作符自动实现。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
    
    merge(planes, I_YUV);                // now merge the results back
    cvtColor(I_YUV, I, CV_YCrCb2BGR);  // and produce the output RGB image

    
    namedWindow("image with grain", CV_WINDOW_AUTOSIZE);   // use this to create images

#ifdef DEMO_MIXED_API_USE
    // this is to demonstrate that I and IplI really share the data - the result of the above
    // processing is stored in I and thus in IplI too.
    cvShowImage("image with grain", IplI);
#else
    imshow("image with grain", I); // the new MATLAB style function show

新的 imshow highgui函数可接受 MatIplImage 数据结构。 编译并运行例程,如果输入以下第一幅图像,程序将输出以下第二幅或者第三幅图像。

The output of the sample

你可以在点击此处看到动态示例: YouTube here ,并可以 点击此处 下载源文件,或者在OpenCV源代码库中找到源文件: samples/cpp/tutorial_code/core/interoperability_with_OpenCV_1/interoperability_with_OpenCV_1.cpp

原文地址:点击打开链接

opencv中的矩阵解释,包括CvMat IplImage 、MAT 类型之间的转化

真实世界中获取数字图像有很多方法,比如数码相机、扫描仪、CT或者磁共振成像。无论哪种方法,我们(人类)看到的是图像,而让数字设备来“看“的时候,则是在记录图像中的每一个点的数值。图像,在标出的镜子区域...

opencv中C接口与C++接口的相互转换(Mat 和 CvMat,IplImage相互转化)

作者:wqvbjhc 转自:http://blog.csdn.net/wqvbjhc/article/details/5967196 Mat 和 CvMat,IplImage相互转化 Now ...
  • whw8007
  • whw8007
  • 2014年02月18日 14:28
  • 762

OpenCV - Mat、CvMat、IplImage类型浅析

OpenCV中常见的与图像操作有关的数据容器有Mat,cvMat和IplImage。   一、Mat类型:矩阵类型,Matrix。        在openCV中,Mat是一个多维的密集数据数组...

opencv中Mat与IplImage,CVMat类型之间转换

翠竹林 opencv中Mat与IplImage,CVMat类型之间转换 opencv中对图像的处理是最基本的操作,一般的图像类型为IplImage类型,但是当我们对图像进行处理的时候,多数都是对...
  • eastlhu
  • eastlhu
  • 2014年02月18日 20:47
  • 847

OpenCV——Mat、CvMat、IplImage类型浅析

OpenCV中常见的与图像操作有关的数据容器有Mat,cvMat和IplImage。   一、Mat类型:矩阵类型,Matrix。        在openCV中,Mat是一个多维的...

openCV学习笔记(9)Mat与IplImage,CvMat类型之间转换

opencv中图像数据容器一般有Mat,cvMat和IplImage。我们在平常的代码中,由于不同的函数的参数类型不一致,经常需要转换这三者之间的相互转化。网上有大量的杂七杂八的资料,望结合实际而用之...

Opencv中Mat与IplImage,CVMat类型之间转换

看程序源码是提高编程技能最直接有效的办法,首先我们来了解一下这三个结构体。由于OpenCV主要针对的是计算机视觉方面的处理,因此在函数库中,最重要的结构体是IplImage结构。从本质上讲,他是一个C...

OpenCV——Mat、CvMat、IplImage类型浅析

http://263796001-qq-com.iteye.com/blog/1409639 OpenCV中常见的与图像操作有关的数据容器有Mat,cvMat和IplImage。   一、M...

OpenCV中IplImage, CvMat, Mat 的关系和相互转换

opencv中常见的与图像操作有关的数据容器有Mat,cvMat和IplImage,这三种类型都可以代表和显示图像,但是,Mat类型侧重于计算,数学性较高,openCV对Mat类型的计算也进行了优化。...
  • masikkk
  • masikkk
  • 2013年05月07日 13:13
  • 1196

Opencv读取mat和cvMat元素&&Mat与IplImage和CvMat类型之间的相互转换

综述: OpenCV有针对矩阵操作的C语言函数. 许多其他方法提供了更加方便的C++接口,其效率与OpenCV一样. OpenCV将向量作为1维矩阵处理. 矩阵按行存储,每行有4字节的校整. 分配...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:OpenCV中IplImage* ,CvMat 与新版OpenCV中 Mat类型的相互转化
举报原因:
原因补充:

(最多只允许输入30个字)