关闭

KMP算法

标签: kmp算法
853人阅读 评论(0) 收藏 举报
分类:


  KMP算法模式匹配分析:

  举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?

许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth。

这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。

1.

首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

2.

因为B与A不匹配,搜索词再往后移。

3.

就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

4.

接着比较字符串和搜索词的下一个字符,还是相同。

5.

直到字符串有一个字符,与搜索词对应的字符不相同为止。

6.

这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。

7.

一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

8.

怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。

9.

已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:

  移动位数 = 已匹配的字符数 - 对应的部分匹配值

因为 6 - 2 等于4,所以将搜索词向后移动4位。

10.

因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。

11.

因为空格与A不匹配,继续后移一位。

12.

逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。

13.

逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。

14.

下面介绍《部分匹配表》是如何产生的。

首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

15.

"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

  - "A"的前缀和后缀都为空集,共有元素的长度为0;

  - "AB"的前缀为[A],后缀为[B],共有元素的长度为0;

  - "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

  - "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

  - "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;

  - "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;

  - "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

16.

"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。

(完)


 输入代码:

#include<iostream>
#include<string>
#define MaxSize 100
using namespace std;
typedef struct
{
    char data[MaxSize];
    int length;
} SqString;
void StrAssign(SqString &s,char cstr[])
{
    int i;
    for(i=0; cstr[i]!='\0'; i++)
        s.data[i]=cstr[i];
    s.length=i;
}
void DispStr(SqString s)
{
    int i;
    if(s.length>0)
    {
        for(i=0; i<s.length; i++)
            cout<<s.data[i];
        cout<<endl;
    }
}
void GetNext(SqString t,int next[])
{
    int j,k;
    j=0;
    k=-1;
    next[0]=-1;
    while(j<t.length-1)
    {
        if(k==-1||t.data[j]==t.data[k])
        {
            j++;
            k++;
            next[j]=k;
        }
        else
            k=next[k];
    }
}
int KMPIndex(SqString s,SqString t)//KMP算法
{
    int next[MaxSize],i=0,j=0;
    GetNext(t,next);
    while(i<s.length&&j<t.length)
    {
        if(j==-1||s.data[i]==t.data[j])
        {
            i++;
            j++;//i,j各自加1
        }
        else
            j=next[j];//i不变,j后退
    }
    if(j>=t.length)
        return (i-t.length);//返回匹配模式串的首字母下标
    else
        return (-1);//返回不匹配标志
}
int main()
{
    SqString s,t;
    int next[MaxSize];
    StrAssign(s,"abcaabbabcabaacbacba");
    StrAssign(t,"abcabaa");
    cout<<"串s: ";
    DispStr(s);
    cout<<"串t: ";
    DispStr(t);
    GetNext(t,next);
    cout<<"next数组的值为:";
    for(int i=0; i<t.length; i++)
    {
        cout<<next[i]<<" ";
    }
    cout<<endl;
    cout<<"t的首字符在s的第"<<KMPIndex(s,t)<<"位开始匹配"<<endl;
    return 0;
}






运行截图:

算法分析博文出处: 点击---->字符串匹配的KMP算法

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:311659次
    • 积分:10280
    • 等级:
    • 排名:第1825名
    • 原创:742篇
    • 转载:6篇
    • 译文:0篇
    • 评论:80条
    最新评论