深度网络模型压缩 - CNN Compression

一. 技术背景       一般情况下,CNN网络的深度和效果成正比,网络参数越多,准确度越高,基于这个假设,ResNet50(152)极大提升了CNN的效果,但inference的计算量也变得很大。这种网络很难跑在前端移动设备上,除非网络变得简洁高效。       基于这个假设,有很多处理方法,设计层数更少的网络、更少的卷积和、每个参数占更少的字节,等等。       前面讲过的 PVANet、...
阅读(472) 评论(0)

视频人员行为识别(Action Recognition)

一. 提出背景       目标:给定一段视频,通过分析,得到里面人员的动作行为。       问题:可以定义为一个分类问题,通过对预定的样本进行分类训练,解决一个输入视频的多分类问题。       这里提出的问题是简单的图片(视频)分类问题,该问题的前提条件是:场景目标为单人,并且占据图片比较大的比例,如下图所示:               还有一类问题是基于行人检测,去估计行人的姿态和动作,...
阅读(691) 评论(1)

Mark 一些有意思的深度学习方向

1. VQA       Visual Question Answering,给出一张图片,就该图片提出任何问题?自动get到你所期望的答案。这属于Visual Reasoning 的范畴,学者们不满足于传统的图像识别、分割、Caption等工作,尝试去挖掘更高级的机器推理能力。来看解决思路,CNN、LSTM(RNN)、Attention Model、BOW,都是图像、文本、NLP领域的通用手法,...
阅读(1170) 评论(0)

NoScope:极速视频目标检测

一.提出背景       在基于CNN的方法提升到一个很高的准确度之后,效率又成为人们所关注的话题,目前兼备准确度和效率的方法包括 SSD、YOLO v2,其检测效率通常能到达 30-100FPS,而这里面的代价就是上万块的显卡,这个代价是相当高的。当下视频获取设备(CCTV摄像头)成本通常是几百块,而采用上述分类算法,其成本可能是几千,这就是视频获取和视频分析之间的巨大鸿沟。       基于此...
阅读(1477) 评论(0)

DenseNet:更接近于真实神经网络的跨层连接

一. 提出背景       论文:Densely Connected Convolutional Networks 【点击下载】       Caffe代码:【Github】       受 Highway、ResNet 等算法思路的启发,提出一种跨层的连接网络,思路非常简单,直接上图:        二. 算法思路       作者这个提法比较大胆,每个层的 input 包括之前所有层的信息,通...
阅读(1419) 评论(2)

对抗网络之目标检测应用:A-Fast-RCNN

对抗网络之目标检测应用:A-Fast-RCNN       论文:A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection 【点击下载】       Caffe代码:【Github】一. 深度学习正确的打开方式       深度学习的根基在于样本,大量的样本决定了深度网络的精确度和收敛性,针对样本的挖掘是深度学...
阅读(1556) 评论(0)

轻量级网络 - PVANet & SuffleNet

一. PVANet       论文:PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection    【点击下载】       Caffe代码:【Github】       设计了一种轻量级的网络,取名叫 PVANet,特点是 Channel少、Layer多,在 VOC2007 和 VOC2012  精确...
阅读(1411) 评论(2)

特征金字塔网络 FPN

一. 提出背景       论文:Feature Pyramid Networks for Object Detection  【点击下载】       在传统的图像处理方法中,金字塔是比较常用的一种手段,像 SIFT 基于金字塔做了多层的特征采集,对于深度网络来讲,其原生的卷积网络特征决定了天然的金字塔结构。深度网络在目标检测领域的应用 比如早期的 Fast RCNN,Faster RCNN 都...
阅读(1024) 评论(1)

Faster R-CNN改进篇(二): RFCN ● RON

@改进1:RFCN       论文:R-FCN: Object Detection via Region-based Fully Convolutional Networks    【点击下载】       MXNet代码:【Github】一. 背景介绍       RCNN 在目标检测上取得了很大的成功,比如 SPPnet、Fast R-CNN、Faster R-CNN 等,这些方法的典型特征...
阅读(1722) 评论(1)

基于视频的目标检测

一. 提出背景       目标检测在图像处理领域有着非常大的占比,过去两年,深度学习在Detection的持续发力,为这个领域带来了变革式的发展:一方面,从 RCNN 到 Fast RCNN,再到 Faster RCNN,不断刷新 mAP;另一方面,SSD、YOLO 则是将性能提高到一个非常高的帧率。       对于视频来讲,相邻帧目标之间存在 明显的上下文关系,这种关系在技术上的表现就是 T...
阅读(1331) 评论(2)

深度学习的研究方向和发展趋势

一. 人工智能应用领域1. 计算机视觉    生物特征识别:人脸识别、步态识别、行人ReID、瞳孔识别;    图像处理:分类标注、以图搜图、场景分割、车辆车牌、OCR、AR;    视频分析:安防监控、智慧城市;2. 自然语言处理    语音识别(Siri、Cortana、讯飞)、文本数据挖掘、文本翻译;3. 数据挖掘    消费习惯、天气数据、推荐系统、知识库(专家系统);4. 游戏    角...
阅读(2600) 评论(11)

Faster R-CNN改进篇(一): ION ● HyperNet ● MS CNN

一. 源起于Faster       深度学习于目标检测的里程碑成果,来自于这篇论文:       Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal networks.” Advances in Neural Information Processing Syst...
阅读(2992) 评论(2)

目标检测 - Tensorflow Object Detection API

一. 找到最好的工具       “工欲善其事,必先利其器”,如果你想找一个深度学习框架来解决深度学习问题,TensorFlow 就是你的不二之选,究其原因,也不必过多解释,看过其优雅的代码架构和工程化实现之后,相信这个问题不会有人再提,这绝非 Caffe an so on 所能比拟的。       回到题头 - 目标检测,相信你一定看过这篇 Paper: Speed/accuracy trade...
阅读(5811) 评论(5)

迁移学习:经典算法解析

一. 了解迁移学习        迁移学习(Transfer Learning)目标是将从一个环境中学到的知识用来帮助新环境中的学习任务。             > The ability of a system to recognize and apply knowledge and skills learned in previous tasks to novel tasks。...
阅读(2643) 评论(0)

深度学习进阶之路 - 从迁移学习到强化学习

一. 深度学习及其适用范围        大数据造就了深度学习,通过大量的数据训练,我们能够轻易的发现数据的规律,从而实现基于监督学习的数据预测。                 没错,这里要强调的是基于监督学习的,也是迄今为止我在讲完深度学习基础所给出的知识范围。        基于卷积神经网络的深度学习(包括CNN、RNN),主要解决的领域是 图像、文本、语音,问题聚焦在 分类...
阅读(2308) 评论(0)
181条 共13页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:153195次
    • 积分:3696
    • 等级:
    • 排名:第9361名
    • 原创:164篇
    • 转载:17篇
    • 译文:0篇
    • 评论:81条
    博客专栏
    最新评论