目标检测 - Tensorflow Object Detection API

一. 找到最好的工具       “工欲善其事,必先利其器”,如果你想找一个深度学习框架来解决深度学习问题,TensorFlow 就是你的不二之选,究其原因,也不必过多解释,看过其优雅的代码架构和工程化实现之后,相信这个问题不会有人再提,这绝非 Caffe an so on 所能比拟的。       回到题头 - 目标检测,相信你一定看过这篇 Paper: Speed/accuracy trade...
阅读(84) 评论(0)

迁移学习:经典算法解析

一. 了解迁移学习        迁移学习(Transfer Learning)目标是将从一个环境中学到的知识用来帮助新环境中的学习任务。             > The ability of a system to recognize and apply knowledge and skills learned in previous tasks to novel tasks。...
阅读(652) 评论(0)

深度学习进阶之路 - 从迁移学习到强化学习

一. 深度学习及其适用范围        大数据造就了深度学习,通过大量的数据训练,我们能够轻易的发现数据的规律,从而实现基于监督学习的数据预测。                 没错,这里要强调的是基于监督学习的,也是迄今为止我在讲完深度学习基础所给出的知识范围。        基于卷积神经网络的深度学习(包括CNN、RNN),主要解决的领域是 图像、文本、语音,问题聚焦在 分类...
阅读(1355) 评论(0)

目标跟踪之ECO:Efficient Convolution Operators for Tracking

一. 相关滤波算法总结        作者首先分析了影响 相关滤波算法 效率的几个原因: 1)Model Size (模型大小)      包括两个方面:          - 模型层数,对应多分辨率 Sample,比如多层 CNN          - 特征维度,对应庞大的 HOG or CNN特征图       这里的效率影响是显而易见的,层数或特征越多,表现力越丰富,计算量也...
阅读(689) 评论(0)

目标跟踪之相关滤波:CF及后续改进篇

一. 何为相关滤波?        Correlation Filter 最早应用于信号处理,用来描述两个信号之间的相关性,或者说相似性(有点像早期的概率密度),先来看定义:        对于两个数据 f 和 g,则两个信号的相关性(correlation)为:                     其中 f∗ 表示 f 的 复共轭,这是和卷积的区别。...
阅读(560) 评论(0)

目标跟踪之GOTURN:Learning to Track at 100 FPS with Deep Regression Networks

一. 简介        选择这篇文章的原因在于能实现 100帧的效果,对于跟踪来讲,大多数应用场景需要实时跟踪,应该说仅仅实时跟踪还不够,还需要计算资源来做 视频解码、检测、比对 等多个工作。        这篇文章 2016年来自 Stanford 大学的 David Held,通过 CNN直接回归的方式得到目标位置。        论文下载:Learning to Track...
阅读(1407) 评论(1)

深度学习之目标跟踪

一. 跟踪进展(Advances in Visual Tracking)        作者在前面的机器学习文章中也讲到了 Tracking,感兴趣的童鞋可以 Review一下:机器学习实践系列之5 - 目标跟踪        前面只是基于传统方法的跟踪,这一篇我们 Focus 在深度学习上。        关注跟踪算法的进展,只需要 Follow VOT Challenge 就可以了,Vi...
阅读(1002) 评论(0)

Mask-RCNN技术解析

一. Mask-RCNN 介绍        上篇文章介绍了 FCN,这篇文章引入个新的概念 Mask-RCNN,看着比较好理解哈,就是在 RCNN 的基础上添加 Mask。        Mask-RCNN 来自于年轻有为的 Kaiming 大神,通过在 Faster-RCNN 的基础上添加一个分支网络,在实现目标检测的同时,把目标像素分割出来。        论文下载:Mask R-CN...
阅读(1140) 评论(0)

图像分割与FCN

一. 图像语义分割        传统的图像分割方法主要包括以下几种: 1)基于边缘检测 2)基于阈值分割       比如直方图,颜色,灰度等 3)水平集方法         这里我们要说的是语义分割,什么是语义分割呢?先来看张图:                 将目标按照其分类进行像素级的区分,比如区分上图的 摩托车 和 骑手,这就是语义分割,语义分割赋予了场景理...
阅读(878) 评论(0)

ResNeXt网络进化

一. ResNeXt 的 Block 改进        MSRA 的 KaiMing 转战Facebook的又一力作,大牛的神来之笔: 论文下载:Aggregated Residual Transformations for Deep Neural Networks 代码地址:【Github】        ResNet、Inception 已经成为目前网络的前进方向,堆叠的Bl...
阅读(914) 评论(2)

ResNet残差网络

前面我们对常用的经典网络进行了介绍,可以查看前面文章:浅入浅出TensorFlow 6 - 实现经典网络        随着网络越来越深,大家发现,仅仅靠 BN、ReLU、DropOut 等 Trick无法解决收敛问题,相反,网络的加深带来参数的增加。        基于之前的实践经验,我们知道:网络并不是越深越好,一方面过多的参数容易导致过拟合(当然样本足够多可以一定程度上解决这个问题);另...
阅读(1262) 评论(0)

基于深度学习的Person Re-ID(度量学习)

度量学习 是指 距离度量学习,Distance Metric Learning,简称为 DML,做过人脸识别的童鞋想必对这个概念不陌生,度量学习是Eric Xing在NIPS 2002提出。        这并不是个新词,说的直白一点,metric learning 是通过特征变换得到特征子空间,通过使用度量学习,让类似的目标距离更近(PULL),不同的目标距离更远(push),也就是说,度量学...
阅读(456) 评论(0)

基于深度学习的Person Re-ID(特征提取)

一. CNN特征提取        通过上一篇文章的学习,我们已经知道,我们训练的目的在于寻找一种特征映射方法,使得映射后的特征 “类内距离最小,类间距离最大”,这种特征映射 可以看作是 空间投影,选择一组基,得到基于这组基的特征变换,与 PCA 有点像。        这一篇我们讲的就是基于 CNN的特征提取,特征提取过程也就是训练过程,训练结果就是 CNN 的参数。        以 T...
阅读(586) 评论(0)

基于深度学习的Person Re-ID(综述)

一. 问题的提出        Person Re-ID 全称是 Person Re-Identification,又称为 行人重检测 or 行人再识别,直观上可以通过两种思路进行比对,一种是 通过 静态图像(still-image)进行特征比对,另一种是通过视频的时序特征(temporal)进行 Video Re-Id。        不管是采用 图像特征比对的方法 还是 结合时序特征比...
阅读(904) 评论(0)

浅入浅出TensorFlow 9 - 代码框架解析

一. TensorFlow 源码        截止到目前为止,TensorFlow 在 Github 的 Contributors 已经接近900人,Fork 30000次。        学习这么庞大的开源项目,首先必须要搞清楚其代码组织形式,我们先来看目录结构:             Project 目录分为4个: 1)tensorflow      核心代码目录,图中...
阅读(804) 评论(0)
169条 共12页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:65600次
    • 积分:2536
    • 等级:
    • 排名:第13809名
    • 原创:155篇
    • 转载:22篇
    • 译文:0篇
    • 评论:24条
    博客专栏
    最新评论