DenseNet:更接近于真实神经网络的跨层连接

一. 提出背景       论文:Densely Connected Convolutional Networks 【点击下载】       Caffe代码:【Github】       受 Highway、ResNet 等算法思路的启发,提出一种跨层的连接网络,思路非常简单,直接上图:        二. 算法思路       作者这个提法比较大胆,每个层的 input 包括之前所有层的信息,通...
阅读(538) 评论(0)

对抗网络之目标检测应用:A-Fast-RCNN

对抗网络之目标检测应用:A-Fast-RCNN       论文:A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection 【点击下载】       Caffe代码:【Github】一. 深度学习正确的打开方式       深度学习的根基在于样本,大量的样本决定了深度网络的精确度和收敛性,针对样本的挖掘是深度学...
阅读(841) 评论(0)

轻量级网络 - PVANet & SuffleNet

一. PVANet       论文:PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection    【点击下载】       Caffe代码:【Github】       设计了一种轻量级的网络,取名叫 PVANet,特点是 Channel少、Layer多,在 VOC2007 和 VOC2012  精确...
阅读(674) 评论(1)

特征金字塔网络 FPN

一. 提出背景       论文:Feature Pyramid Networks for Object Detection  【点击下载】       在传统的图像处理方法中,金字塔是比较常用的一种手段,像 SIFT 基于金字塔做了多层的特征采集,对于深度网络来讲,其原生的卷积网络特征决定了天然的金字塔结构。深度网络在目标检测领域的应用 比如早期的 Fast RCNN,Faster RCNN 都...
阅读(623) 评论(1)

Faster R-CNN改进篇(二): RFCN ● RON

@改进1:RFCN       论文:R-FCN: Object Detection via Region-based Fully Convolutional Networks    【点击下载】       MXNet代码:【Github】一. 背景介绍       RCNN 在目标检测上取得了很大的成功,比如 SPPnet、Fast R-CNN、Faster R-CNN 等,这些方法的典型特征...
阅读(827) 评论(1)

基于视频的目标检测

一. 提出背景       目标检测在图像处理领域有着非常大的占比,过去两年,深度学习在Detection的持续发力,为这个领域带来了变革式的发展:一方面,从 RCNN 到 Fast RCNN,再到 Faster RCNN,不断刷新 mAP;另一方面,SSD、YOLO 则是将性能提高到一个非常高的帧率。       对于视频来讲,相邻帧目标之间存在 明显的上下文关系,这种关系在技术上的表现就是 T...
阅读(816) 评论(2)

深度学习的研究方向和发展趋势

一. 人工智能应用领域1. 计算机视觉    生物特征识别:人脸识别、步态识别、行人ReID、瞳孔识别;    图像处理:分类标注、以图搜图、场景分割、车辆车牌、OCR、AR;    视频分析:安防监控、智慧城市;2. 自然语言处理    语音识别(Siri、Cortana、讯飞)、文本数据挖掘、文本翻译;3. 数据挖掘    消费习惯、天气数据、推荐系统、知识库(专家系统);4. 游戏    角...
阅读(1772) 评论(11)

Faster R-CNN改进篇(一): ION ● HyperNet ● MS CNN

一. 源起于Faster       深度学习于目标检测的里程碑成果,来自于这篇论文:       Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal networks.” Advances in Neural Information Processing Syst...
阅读(1890) 评论(0)

目标检测 - Tensorflow Object Detection API

一. 找到最好的工具       “工欲善其事,必先利其器”,如果你想找一个深度学习框架来解决深度学习问题,TensorFlow 就是你的不二之选,究其原因,也不必过多解释,看过其优雅的代码架构和工程化实现之后,相信这个问题不会有人再提,这绝非 Caffe an so on 所能比拟的。       回到题头 - 目标检测,相信你一定看过这篇 Paper: Speed/accuracy trade...
阅读(2671) 评论(2)

迁移学习:经典算法解析

一. 了解迁移学习        迁移学习(Transfer Learning)目标是将从一个环境中学到的知识用来帮助新环境中的学习任务。             > The ability of a system to recognize and apply knowledge and skills learned in previous tasks to novel tasks。...
阅读(1057) 评论(0)

深度学习进阶之路 - 从迁移学习到强化学习

一. 深度学习及其适用范围        大数据造就了深度学习,通过大量的数据训练,我们能够轻易的发现数据的规律,从而实现基于监督学习的数据预测。                 没错,这里要强调的是基于监督学习的,也是迄今为止我在讲完深度学习基础所给出的知识范围。        基于卷积神经网络的深度学习(包括CNN、RNN),主要解决的领域是 图像、文本、语音,问题聚焦在 分类...
阅读(1716) 评论(0)

目标跟踪之ECO:Efficient Convolution Operators for Tracking

一. 相关滤波算法总结        作者首先分析了影响 相关滤波算法 效率的几个原因: 1)Model Size (模型大小)      包括两个方面:          - 模型层数,对应多分辨率 Sample,比如多层 CNN          - 特征维度,对应庞大的 HOG or CNN特征图       这里的效率影响是显而易见的,层数或特征越多,表现力越丰富,计算量也...
阅读(1155) 评论(0)

目标跟踪之相关滤波:CF及后续改进篇

一. 何为相关滤波?        Correlation Filter 最早应用于信号处理,用来描述两个信号之间的相关性,或者说相似性(有点像早期的概率密度),先来看定义:        对于两个数据 f 和 g,则两个信号的相关性(correlation)为:                     其中 f∗ 表示 f 的 复共轭,这是和卷积的区别。...
阅读(1093) 评论(0)

目标跟踪之GOTURN:Learning to Track at 100 FPS with Deep Regression Networks

一. 简介        选择这篇文章的原因在于能实现 100帧的效果,对于跟踪来讲,大多数应用场景需要实时跟踪,应该说仅仅实时跟踪还不够,还需要计算资源来做 视频解码、检测、比对 等多个工作。        这篇文章 2016年来自 Stanford 大学的 David Held,通过 CNN直接回归的方式得到目标位置。        论文下载:Learning to Track...
阅读(1824) 评论(1)

深度学习之目标跟踪

一. 跟踪进展(Advances in Visual Tracking)        作者在前面的机器学习文章中也讲到了 Tracking,感兴趣的童鞋可以 Review一下:机器学习实践系列之5 - 目标跟踪        前面只是基于传统方法的跟踪,这一篇我们 Focus 在深度学习上。        关注跟踪算法的进展,只需要 Follow VOT Challenge 就可以了,Vi...
阅读(1380) 评论(1)
177条 共12页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:105457次
    • 积分:3093
    • 等级:
    • 排名:第11268名
    • 原创:160篇
    • 转载:17篇
    • 译文:0篇
    • 评论:54条
    博客专栏
    最新评论