关闭

动态规划HDU2583

标签: dp
750人阅读 评论(0) 收藏 举报
分类:

permutation

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 126    Accepted Submission(s): 72

Problem Description
Permutation plays a very important role in Combinatorics. For example ,1 2 3 4 5 and 1 3 5 4 2 are both 5-permutations. As everyone's known, the number of n-permutations is n!. According to their magnitude relatives ,if we insert the sumbols "<" or ">"between every pairs of consecutive numbers of a permutations,we can get the permutations with symbols. For example,1 2 3 4 5 can be changed to 1<2<3<4<5, 1 3 5 4 2 can be changed to 1<3<5>4>2. Now it's yout task to calculate the number of n-permutations with k"<"symbol. Maybe you don't like large numbers ,so you should just geve the result mod 2009.
 
Input
Input may contai multiple test cases.
Each test case is a line contains two integers n and k .0<n<=100 and 0<=k<=100.
The input will terminated by EOF.
 
Output
The nonegative integer result mod 2007 on a line.
 
Sample Input
5 2
 
Sample Output
66
 
思路:
看到这道题第一感觉就是DP,找状态的时候,题目中有一句话给了tips,省去自己想的工夫,状态:
the number of n-permutations with k"<"symbol is F[n][k](n-全排列中有k个<符号的排列一共有F[n][k]个).
那么如何找状态转移式和初始状态呢?
显然F[i][0]=F[i][i-1]=1,其中1<=i<=100,因为有0个<和有i-1个<的序列只有严格递增和严格递减这1种排列情况。
初态找到了,接下来的任务是找状态转移式:
假设F[i][j] = m,表示前A[0],[1]...A[i-1]个元素组成的序列包含j个<.那么,将A[i]插入到A[0]-A[i-1]序列中,会如何?


所以有:
/*the number of n-permutations with k"<"symbol is F[n][k]
  find the turning
  F[i][0]=1,F[i][i-1]=1,i>j,i(n),j(k) 0<i<=100,0<=k<=100
  以1 3 2 5 4为例,如果我们要插入6,如何办,分<和>分析可知
  F[n+1][k] = F[n][k]*(k+1)+F[n][k-1]*(n-k+1)
  F[1][0]=F[2][0]=F[3][0]=F[4][0]=.....=F[n][0]=1;
  F[1][0]=F[2][1]=F[3][2]...............F[n][n-1]=1;
  转移式:
  F[n][k] = F[n-1][k]*(k+1)+F[n-1][k-1]*(n-k)*/

#include<iostream>
using namespace std;

int F[105][105];
int n,k;

void DP()
{
	int i,j;
	for(i=1; i<=100; ++i)
		F[i][0] = F[i][i-1] = 1;
	for(i=1; i<=100; ++i)
	{
		for(j=0; j<i-1; ++j)
		{
			F[i][j] = (F[i-1][j]*(j+1)+F[i-1][j-1]*(i-j)) % 2009;
		}
	}
}
int main()
{
	DP();
	while(cin >> n >> k)
	{
		cout << F[n][k] << endl;
	}
	return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:405446次
    • 积分:6099
    • 等级:
    • 排名:第4113名
    • 原创:228篇
    • 转载:33篇
    • 译文:0篇
    • 评论:45条
    博客专栏
    最新评论