关闭

排序算法总结(6)--快速排序

标签: 排序算法Java
88人阅读 评论(0) 收藏 举报
分类:

一、简介

快速排序是冒泡排序的改进。可以看成是一个分治的过程。首先将数组A[p,…r]分成三部分:A[p,…,q-1],A[q],A[q+1,…,r],A[p,…,q-1]中的每一个元素都比A[q]小,而A[q+1,…,r]的每一个元素都比A[q]大。然后分别对A[p,…,q-1]和A[q+1,…,r]递归调用快速排序。当左右两部分排序好之后,即完成了整个数组的排序。
那么如何计算下标q是整个快速排序的关键。首先选择一个元素作为主元,围绕它来划分A[p,…r],这个主元也是最后的A[q]。划分过程中需要两个指针,一个j用来遍历数组,另一个i指向被交换的索引。从数组的左端开始遍历,如果A[j]小于主元,i++,并且A[i]和A[j]交换,如果大于等于主元,则不交换,当数组遍历完毕之后,将主元和A[i+1]交换。
快速排序是冒泡排序的改进。在冒泡排序中,每次循环改变一个元素的位置,并确定这个元素的位置,即将这个元素“浮”到最前面的位置。在快速排序中,每次改变多个元素的位置,并确定一个元素的位置,将这个元素“浮”到合适的位置。快速排序在每次循环中,交换的次数明显减少。

二、伪代码

2.1 递归

quickSort(A,p,r)
    if p<r
        q=partition(A,p,r)
        quickSort(A,p,q-1)
        quickSort(A,p+1,r)


partition(A,p,r)
    x=A[r]
    i=p-1
    for j=p tp r-1
        if A[j]<x
            i++
            swap(A[i],A[j])
    swap(A[i+1],A[r])
    return i+1

2.2 非递归

使用一个栈辅助,存储p,q,r

loopQuickSort(A)
    S=null  //创建一个栈
    start=0;
    end=A.length-1
    S.push(start)
    S.push(end)
    while(!S.isEmpty)
        end=S.pop()
        start=S.pop()
        q=partition(A,start,end)
        if(start<q-1)
            S.push(start)
            S.push(q-1)
        if(end>q+1)
            S.push(q+1)
            S.push(end)

三、代码实现

3.1 递归

public static void quickSort(int[] array,int p,int r){
        //p95
        if(p<r){
            int q=partition(array,p,r);
            quickSort(array,p,q-1);
            quickSort(array,q+1,r);
        }
    }

public static int partition(int[] array,int p,int r){
        //p95
        int x=array[r];
        int i=p-1;
        for(int j=p;j<r;j++){
            if(array[j]<=x){
                i+=1;
                int temp=array[i];
                array[i]=array[j];
                array[j]=temp;
            }
        }
        i+=1;
        array[r]=array[i];
        array[i]=x;
        return i;

    }

时间复杂度 O(nlgn)
空间复杂度 原址排序,递归调用需要辅助空间

3.2 非递归

public static void loopQuickSort(int[] array){
        //p95
        Stack<Integer> s=new Stack<Integer>();
        int start=0;
        int end=array.length-1;
        s.push(start);
        s.push(end);
        while(!s.isEmpty()){
            end=s.pop();
            start=s.pop();
            int q=partition(array,start,end);
            if(start<q-1){
                s.push(start);
                s.push(q-1);
            }
            if(end>q+1){
                s.push(q+1);
                s.push(end);
            }
        }
    }

public static int partition(int[] array,int p,int r){
        //p95
        int x=array[r];
        int i=p-1;
        for(int j=p;j<r;j++){
            if(array[j]<=x){
                i+=1;
                int temp=array[i];
                array[i]=array[j];
                array[j]=temp;
            }
        }
        i+=1;
        array[r]=array[i];
        array[i]=x;
        return i;

    }

时间复杂度O(nlgn)
空间复杂度:需要一个栈辅助

四、注意事项

1、快速排序每一次循环可以至少确定一个元素的位置
2、快速排序的非递归不一定比递归快
3、当需要排序的序列中有大量的相等的元素时,用快速排序性能尚可,但还有很大的改进空间,可以设计算法,将序列分成三部分,第一部分和第三部分和之前一样,第二部分存放和主元相同的元素,之后的比较只用在第一和第三部分进行。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:4007次
    • 积分:242
    • 等级:
    • 排名:千里之外
    • 原创:22篇
    • 转载:6篇
    • 译文:0篇
    • 评论:0条
    文章分类