怎样合理地定义用户流失

转载 2015年07月09日 19:01:17

最近最常被问到的就是一些用户的统计指标,无论是决策层还是产品部门,所以这篇文章重点说下用户指标的一些内容。

7960882353016752169

  假设你想用尽量简洁有效的数据了解一个网站或产品的用户情况,你会问哪几个用户数据?其实一个聪明的提问者永远不会问网站的累计用户数有多少,甚至不会问网站的UV是多少,因为这些指标都不能从真正意义上去反映网站的价值和发展状况。

 

用户的细分方式

 

我不建议把用户细分成许许多多的类型,目前为止见过的用户细分的类别也不在少数,罗列出来应该有一大串:当前用户、新老用户、活跃用户、流失用户、留存用户、回访用户、误闯用户、休眠用户、常驻用户、忠诚用户……其实很多的定义或含义是相近的,在分析层面也扮演着类似的指标角色。所以不建议将用户这样混乱无章地分成N个类别,用户的细分关键在于以合理的体系将用户细分成几个类别,并且每个类别都能发挥其在用户分析上的功效,不存在累赘和混淆

 

所以这里想介绍下我认为比较合理的用户细分方式。我将用户分成以下几类:当前使用用户新用户活跃用户流失用户回访用户,下面来简单的解释下。

 

当前使用用户:即我们平常所说的UV,也就是网站的登录或者使用用户数。用于体现网站的当前运营状况。

 

新用户:首次访问或者刚刚注册的用户;那么那些不是首次来访的用户就是老用户,于是同时也获得了老用户的统计。用于分析网站的推广效果或者成长空间。

 

活跃用户数:活跃用户的定义千差万别,一般定义有关键动作或者行为达到某个要求时的用户为活跃用户;每个网站应该根据自身的产品特定定义活跃用户。活跃用户用于分析网站真正掌握了多少有价值用户。

 

流失用户:网站的活跃用户与流失用户中已经做了定义和介绍,用于分析网站保留用户的能力。我们将那些未流失的用户叫做留存用户,可以通过总使用用户数减去流失用户数计算得到。

 

回访用户:是指那些之前已经流失,但之后又重新访问你的网站的用户。用于分析网站对挽回流失用户的能力(常常会受到那些很久没有登录的网站给你发的邮件吧,让你回去看看,这些措施就是他们在挽留那些流失用户)。除非近期内执行了一些挽留流失用户的手段,正常情况下回访用户的比例应该是比较低的,否则就是你对流失用户的定义不够准确,应该适当延长定义流失的时间间隔。

 

所以其实在我们获得某些用户统计指标之后,通过计算同时也获得了诸如老用户、留存用户这些指标。

 

值得关注的用户指标

 

文章的开头已经提到过,如果你想了解一个网站或者一个产品的用户情况,请尽量抓住那些最为关键的用户指标。如果是我来问,我只会问3个指标:活跃用户数新用户比例用户流失率

 

显而易见,活跃用户数直接反映了网站或者产品真正掌握着多少用户,这些用户并不是因为某些广告或者链接误点进来的,而是真正对这个网站或者产品感兴趣,有意向去使用或者持续关注的。活跃用户数越高,网站或者产品当前拥有的价值越高。但这里有一点需要格外注意,那就是活跃用户的定义,活跃用户跟新用户不一样,活跃用户可能催生各种形形色色的定义,不同的定义影响着活跃用户的数量,当你问到活跃用户时,一定要了解对方是如何定义活跃用户的。我更偏向于严谨的定义,虽然这会让活跃用户“减少”,但严谨的定义让数据显得更加真实,可以说根据这个定义统计到的用户是那些真正在为网站创造价值的用户。

 

新用户比例反映着网站或产品的推广能力,渠道的铺设和带来的效果。新用户比例不仅是评估市场部门绩效的一个关键指标,同时也是反映网站和产品发展状况的重要指标。

 

但只看新用户比例是不够的,需要结合着用户流失率一起看。我见过流失率98%的网站,也见过流失率20%左右的产品,流失率会根据产品对用户黏性的不同而显得参差不齐。用户流失率反映了网站或者产品保留用户的能力,即新用户比例反映的是用户“进来”的情况,用户流失率反映的是用户“离开”的情

 

诸葛io,是一款基于用户洞察的精细化运营分析工具。由北京诸葛云游科技有限公司于2015年2月推出。诸葛io旨在以用户跟踪技术和简单易用的集成开发方法,帮助移动应用的运营者们挖掘用户的真实行为与属性、优化留存与活跃度、提升用户价值。目前,诸葛io支持Android、iOS和HTML(JS)三个平台。

http://zhugeio.com/news/?p=777

网站运营活跃用户、流失用户、流失率、新用户流失率定义以及诠释

网站运营活跃用户、流失用户、流失率、新用户流失率定义以及诠释 2012-12-22 745 人次浏览 评论 0 条 核心提示:本文简单介绍了活跃用户数、流失用户数、流失率、新用户流失率...
  • sustskd
  • sustskd
  • 2014年11月11日 10:02
  • 3536

用户流失分析中的关键技术

机器学习:对于某类任务T和性能度量P,如果一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么我们称这个计算机程序在从经验E学习。...
  • u013915133
  • u013915133
  • 2017年11月13日 21:42
  • 90

怎样合理地定义用户流失

最近最常被问到的就是一些用户的统计指标,无论是决策层还是产品部门,所以这篇文章重点说下用户指标的一些内容。   假设你想用尽量简洁有效的数据了解一个网站或产品的用户情况,你会问哪几个用户...
  • liu94457
  • liu94457
  • 2015年07月09日 19:01
  • 1131

金融风控-->申请评分卡模型-->申请评分卡介绍

从这篇博文开始,我将总结金融风控中的另外一个模型:申请评分卡模型。这篇博文将主要来介绍申请评分卡的一些基本概念。本篇博文将以以下四个主题来进行介绍说明: 信用风险和评分卡模型的基本概念 申请评分卡在互...
  • Mr_tyting
  • Mr_tyting
  • 2017年07月14日 10:52
  • 4458

流失预测模型

http://blog.sina.com.cn/s/blog_c308e7dd0101cp4h.html 流失预测模型在很多行业都有引用到切实的市场运...
  • scut1135
  • scut1135
  • 2013年12月17日 01:53
  • 1501

[机器学习实战]使用 scikit-learn 预测用户流失

客户流失“流失率”是描述客户离开或停止支付产品或服务费率的业务术语。这在许多企业中是一个关键的数字,因为通常情况下,获取新客户的成本比保留现有成本(在某些情况下,贵5到20倍)。因此,了解保持客户参与...
  • BaiHuaXiu123
  • BaiHuaXiu123
  • 2017年03月14日 22:19
  • 3980

Milogs客户销售工作日志软件系统简介

 关键词: 客户管理,销售管理,工作日志                                           有个人免费使用的工作日志软件,适用于客户、销售管理,工作日志管理,软件下载...
  • milogs
  • milogs
  • 2006年07月11日 23:54
  • 2200

谁在使用我的网站——用户分类

谁在使用我的网站——用户分类 用户分类 在网站分析中,根据用户的基本信息和行为特征可以将用户分为许多类别,衍生出各种各样的用户指标,对于用户总体的统计可以让我们明确用户的整体变化情况,而对于用户各...
  • broadview2006
  • broadview2006
  • 2013年02月27日 10:51
  • 5590

不会机器学习,你照样可以预测用户流失

———— / BEGIN / ———— 什么是用户流失率? 我们为什么需要关注用户流失率? 简单来说: 用户流失率是指用户的流失数量与全部使用/消费产品(或服务...
  • k7Jz78GeJJ
  • k7Jz78GeJJ
  • 2017年11月03日 00:00
  • 160

LogisticRegression用户流失预测模型初探【推荐】

什么是逻辑回归? Logistic回归与多重线性回归实际上有很多相同之处,最大的区别就在于它们的因变量不同,其他的基本都差不多。正是因为如此,这两种回归可以归于同一个家族,即广义线性模型(gener...
  • java1573
  • java1573
  • 2017年12月18日 10:40
  • 143
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:怎样合理地定义用户流失
举报原因:
原因补充:

(最多只允许输入30个字)