关闭

排序算法--冒泡排序,归并排序,快速排序

标签: 冒泡排序归并排序快速排序
59人阅读 评论(0) 收藏 举报
分类:

冒泡排序:
属于交换排序的一种。
很好理解的交换排序是这样的:

for (int i = 0; i < n; ++i)
    for (int j = i+1; j < n; ++j)
    {
        if (nums[i] > nums[j])
            swap(nums[i], nums[j])
    }

这个算法的逻辑是从头到尾扫描元素,将这个元素和它后面的所有元素进行比较,如果有比它更小的,那就交换,最后交换的一定是最小的,然后元素指针i后移,再比较它后边的所有元素。
冒泡算法和这个算法类似,不同之处就在于两个for循环,它是交换相邻两个元素,完成一次内循环,最大的元素就跑到了最后一个位置。代码为:

for (int i = 0; i < n - 1; ++i)
    for (int j = 0; j < n - i -1; ++j)
    {
        if (nums[j] > nums[j + 1])
            swap(nums[j], nums[j + 1])
    }

第一层for循环用来控制已经排好序的元素,第二层for循环,用来将未排好序的元素相邻元素比较。循环次数中,为什么要减一呢,那是因为元素要和它下一个元素比较,如果不减一,数组下标就会越界。
归并排序:
这个排序是用递归来做的。需要定义一个merge()函数(归并函数),这个函数的目的是将两个数组归一为一个有序数组。这个merge()函数的参数有待排序数组nums, 第一个元素下标,中间元素下标,最后一个元素下标。merge函数定义如下:

void merge(int nums[], int first, int mid, int last)
{
    int * temp = new int[last - mid + 1];
    int i = first;
    int j = mid + 1;
    int k = 0;
    // 这里是核心,也就是归并
    while (i <= mid && j <=last)
    {
        if (nums[i] < nums[j])
            temp[k++] = nums[i++];
        else
            temp[k++] = nums[j++];
    }
    // 归并完了之后,要判断谁还有剩下的,将剩下的放到数组temp中
    while (i <= mid)
        temp[k++] = nums[i++];
    while (j <= last)
        temp[k++] = nums[j++];
    // 然后将temp中的值拷贝到原数组中
    i = first;
    k = 0;
    while (i <= last)
        nums[i++] = temp[k++];
}

上边是归并排序的归并部分。还需要定义一个归并排序函数,用来做递归用。

void mergeSort(int nums[], int first, int last)
{
    // 递归函数返回
    if (first >= last)
        return;
    // 否则,继续细分数组,前一半,后一半
    int mid = (first + last) / 2;
    mergeSort(nums, first, mid);
    mergeSort(nums, mid + 1, last);
    // 一前一后都归并排序好了,调用归并函数开始归并
    merge(nums, first, mid, last);
}

这里需要注意的是,last指针指的是最后一个元素。
快速排序:
快速排序的核心就是有一个pivot,我们叫它“基准”。快速排序和归并排序一样,也是用递归来实现的。
做法是: 先定义两个指针i,j。i指向第一个元素,j指向最后一个元素。先将pivot于j所指向的元素比较,若比它大,j--,若比它小,把j所指向的元素给i,i++;再开始pivot和i所指向的元素比较,若i所指向的元素比pivot大,则将i所指向的元素赋给j,j--。
也就是说先从后向前扫描,找到比它小的,再掉转方向,从前往后扫描,找打比它大的,再掉转方向,直到i和j相遇,算法结束。

void quickSort(int nums[], int first, int last)
{
    if (first >= last)
        return;
    // 已数组的第一个元素为基准
    int pivot = nums[first];
    int i = first;
    int j = last;
    // 首先要有大循环的结束条件,那就是 i < j
    while ( i < j)
    {
        while ( i < j && nums[j] >= pivot)
            j--;
        nums[i] = nums[j];
        while (i < j && nums[i] <= pivot)
            i++;
        nums[j] = nums[i];
    }
    nums[i] = pivot;
    quickSort(nums, first, i - 1);
    quickSort(nums, i + 1, last);
}

这里需要注意的是:
1. 必需有递归结束函数
2. 每扫描一次,也要判断一次i是否小于j
3. 如果元素等于基准,就不移动。
打拳时间到了,先记录这三个算法吧。
若有不对之处,敬请指正。

1
0

  相关文章推荐
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:13431次
    • 积分:750
    • 等级:
    • 排名:千里之外
    • 原创:66篇
    • 转载:0篇
    • 译文:0篇
    • 评论:3条
    最新评论