基于NCC模板匹配识别

转载 2015年11月19日 21:30:55


一:基本原理

NCC是一种基于统计学计算两组样本数据相关性的算法,其取值范围为[-1, 1]之间,而对图像来说,每个像素点都可以看出是RGB数值,这样整幅图像就可以看成是一个样本数据的集合,如果它有一个子集与另外一个样本数据相互匹配则它的ncc值为1,表示相关性很高,如果是-1则表示完全不相关,基于这个原理,实现图像基于模板匹配识别算法,其中第一步就是要归一化数据,数学公式如下:


二:实现步骤

(1)      获取模板像素并计算均值与标准方差、像素与均值diff数据样本

(2)      根据模板大小,在目标图像上从左到右,从上到下移动窗口,计

算每移动一个像素之后窗口内像素与模板像素的ncc值,与阈值比较,大于

阈值则记录位置

(3)      根据得到位置信息,使用红色矩形标记出模板匹配识别结果。

(4)      UI显示结果

 

三:编程实现

基于JAVA语言完成了整个算法编程实现与演示,其中第一步的代码如下:

  1. int tw = template.getWidth();  
  2. int th = template.getHeight();  
  3. int[] tpixels = new int[tw * th];  
  4. getRGB(template, 00, tw, th, tpixels);  
  5. for(int i=0; i<tpixels.length; i++)  
  6. {  
  7.     tpixels[i] = (tpixels[i] >> 16) & 0xff;  
  8. }  
  9. double[] meansdev = getPixelsMeansAndDev(tpixels);  
  10. double[] tDiff = calculateDiff(tpixels, meansdev[0]);  
  11. int raidus_width = tw / 2;  
  12. int raidus_height = th / 2;  

第二步的实现代码如下:

  1. int[] windowPixels = new int[tw * th];  
  2. Arrays.fill(windowPixels, 0);  
  3. for (int row = 0; row < height; row++) {  
  4.     for (int col = 0; col < width; col++) {  
  5.         // calculate the means and dev for each window  
  6.         if(row <  raidus_height || (row + raidus_height) >= height)  
  7.             continue;  
  8.         if(col < raidus_width || (col + raidus_width) >= width)   
  9.             continue;  
  10.         int wrow = 0;  
  11.         Arrays.fill(windowPixels, 0);  
  12.         for(int subrow = -raidus_height; subrow <= raidus_height; subrow++ )  
  13.         {  
  14.             int wcol = 0;  
  15.             for(int subcol = -raidus_width; subcol <= raidus_width; subcol++ )  
  16.             {  
  17.                 if(wrow >= th || wcol >= tw)  
  18.                 {  
  19.                     continue;  
  20.                 }  
  21.                 windowPixels[wrow * tw + wcol] = getPixelValue(width, col + subcol, row + subrow, inPixels);  
  22.                 wcol++;  
  23.             }  
  24.             wrow++;  
  25.         }  
  26.         // calculate the ncc  
  27.         double[] _meansDev = getPixelsMeansAndDev(windowPixels);  
  28.         double[] diff = calculateDiff(windowPixels, _meansDev[0]);  
  29.         double ncc = calculateNcc(tDiff, diff, _meansDev[1], meansdev[1]);  
  30.         if(ncc > threhold) {  
  31.             Point mpoint = new Point();  
  32.             mpoint.x = col;  
  33.             mpoint.y  = row;  
  34.             points.add(mpoint);  
  35.         }  
  36.     }  
  37. }  

第三步的实现代码如下:

  1. // draw matched template on target image according position  
  2. setRGB( dest, 00, width, height, inPixels );  
  3. Graphics2D g2d = dest.createGraphics();  
  4. g2d.setPaint(Color.RED);  
  5. g2d.setStroke(new BasicStroke(4));  
  6. for(Point p : points)  
  7. {  
  8.     g2d.drawRect(p.x - raidus_width, p.y - raidus_height, tw, th);  
  9. }  

其中第二步用到的计算NCC的方法实现如下:

  1. private double calculateNcc(double[] tDiff, double[] diff, double dev1, double dev2) {  
  2.     // TODO Auto-generated method stub  
  3.     double sum = 0.0d;  
  4.     double count = diff.length;  
  5.     for(int i=0; i<diff.length; i++)  
  6.     {  
  7.         sum += ((tDiff[i] * diff[i])/(dev1 * dev2));  
  8.     }  
  9.     return (sum / count);  
  10. }  

UI部分完整源代码如下:

  1. package com.gloomyfish.image.templae.match;  
  2.   
  3. import java.awt.BorderLayout;  
  4. import java.awt.FlowLayout;  
  5. import java.awt.Graphics;  
  6. import java.awt.Graphics2D;  
  7. import java.awt.event.ActionEvent;  
  8. import java.awt.event.ActionListener;  
  9. import java.awt.image.BufferedImage;  
  10. import java.io.IOException;  
  11.   
  12. import javax.imageio.ImageIO;  
  13. import javax.swing.JButton;  
  14. import javax.swing.JComponent;  
  15. import javax.swing.JFrame;  
  16. import javax.swing.JPanel;  
  17.   
  18. public class DemoUI extends JComponent {  
  19.       
  20.     /** 
  21.      *  
  22.      */  
  23.     private static final long serialVersionUID = 1L;  
  24.     private BufferedImage targetImage;  
  25.     private BufferedImage template;  
  26.       
  27.     public DemoUI()  
  28.     {  
  29.         super();  
  30.         java.net.URL imageURL = this.getClass().getResource("words.png");  
  31.         java.net.URL templateURL = this.getClass().getResource("template.png");  
  32.           
  33.         try {  
  34.             template = ImageIO.read(templateURL);  
  35.             targetImage = ImageIO.read(imageURL);  
  36.         } catch (IOException e) {  
  37.             e.printStackTrace();  
  38.         }  
  39.     }  
  40.       
  41.     public void setTarget(BufferedImage target) {  
  42.         this.targetImage = target;  
  43.     }  
  44.   
  45.     @Override  
  46.     protected void paintComponent(Graphics g) {  
  47.         Graphics2D g2 = (Graphics2D) g;  
  48.         if(targetImage != null) {  
  49.             g2.drawImage(targetImage, 1010, targetImage.getWidth(), targetImage.getHeight(), null);  
  50.         }  
  51.         if(template != null) {  
  52.             g2.drawImage(template, 20+targetImage.getWidth(), 10, template.getWidth(), template.getHeight(), null);  
  53.         }  
  54.     }  
  55.       
  56.     public static void main(String[] args) {  
  57.         JFrame f = new JFrame("模板匹配与识别");  
  58.         JButton okBtn = new JButton("匹配");  
  59.         final DemoUI ui = new DemoUI();  
  60.         okBtn.addActionListener(new ActionListener() {  
  61.   
  62.             @Override  
  63.             public void actionPerformed(ActionEvent e) {  
  64.                   
  65.                 ui.process();  
  66.             }  
  67.         });  
  68.           
  69.         JPanel btnPanel = new JPanel();  
  70.         btnPanel.setLayout(new FlowLayout(FlowLayout.RIGHT));  
  71.         btnPanel.add(okBtn);  
  72.           
  73.         f.getContentPane().add(btnPanel, BorderLayout.SOUTH);  
  74.         f.getContentPane().add(ui, BorderLayout.CENTER);  
  75.         f.setSize(500500);  
  76.         f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);  
  77.         f.setVisible(true);  
  78.     }  
  79.   
  80.     protected void process() {  
  81.         NccTemplateMatchAlg algo = new NccTemplateMatchAlg(template);  
  82.         targetImage = algo.filter(targetImage, null);  
  83.         this.repaint();  
  84.     }  
  85.   
  86. }  

四:程序运行效果如下


其中左边是目标图像、右边为模板图像

相关文章推荐

模板匹配算法

模板匹配(Template Matching)算法

【图像配准】基于灰度的模板匹配算法(一):MAD、SAD、SSD、MSD、NCC、SSDA、SATD算法

本文主要介绍几种基于灰度的图像匹配算法:平均绝对差算法(MAD)、绝对误差和算法(SAD)、误差平方和算法(SSD)、平均误差平方和算法(MSD)、归一化积相关算法(NCC)、序贯相似性算法(SSDA...

模板匹配算法简介

模板匹配是数字图像处理的重要组成部分之一。把不同传感器或同一传感器在不同时间、不同成像条件下对同一景物获取的两幅或多幅图像在空间上对准,或根据已知模式到另一幅图中寻找相应模式的处理方法就叫做模板匹配。...

基于边界的模板匹配的原理及算法实现

最近被Halcon中的基于边缘的模板匹配算法吸引到了,故找到了一点点学习资料,供同行参阅,水平有限,大家多包含。本文算法很初级,做入门了解用。原文是英文,所以把原文copy 过来了,另加了一些中文。算...

图像算法,模版匹配

原文地址:图像算法,模版匹配作者:zlingh1.opencv http://www.cnblogs.com/skyseraph/archive/2011/03/29/1998681.html   ...

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

灰度模板匹配算法

1、介绍 基于灰度的图像匹配算法包括:平均绝对差算法(MAD)、绝对误差和算法(SAD)、误差平方和算法(SSD)、平均误差平方和算法(MSD)、归一化积相关算法(NCC)、序贯相似性算法(SSDA...

基于边界的模板匹配的原理及算法实现

转载自http://blog.csdn.net/huixingshao/article/details/45560643 最近被Halcon中的基于边缘的模板匹配算法吸引到了,故找到...
  • lcydhr
  • lcydhr
  • 2016年06月05日 22:27
  • 464

使用OpenCV&&C++进行模板匹配

使用OpenCV&&C++进行模板匹配(http://www.cnblogs.com/A-FM/p/6106412.html) 一:课程介绍 1.1:学习目标   学会用imread载入...

[opencv]模板匹配算法(单图像模板匹配和基于模板匹配的目标跟踪)

1.模板匹配opencv函数 链接:http://www.opencv.org.cn/opencvdoc/2.3.2/html/modules/imgproc/doc/object_detection...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:基于NCC模板匹配识别
举报原因:
原因补充:

(最多只允许输入30个字)