0013算法笔记——【动态规划】最大子段和问题,最大子矩阵和问题,最大m子段和问题

本文详细介绍了动态规划在解决最大子段和问题、最大子矩阵和问题以及最大m子段和问题上的应用。通过枚举法、分治法和动态规划算法,展示了如何有效地求解这些问题,其中动态规划算法的时间复杂度和空间复杂度较低,达到O(n)或更低。
摘要由CSDN通过智能技术生成

     1、最大子段和问题

     问题定义:对于给定序列a1,a2,a3……an,寻找它的某个连续子段,使得其和最大。如( -2,11,-4,13,-5,-2 )最大子段是{ 11,-4,13 }其和为20。

     (1)枚举法求解

     枚举法思路如下:

     以a[0]开始: {a[0]}, {a[0],a[1]},{a[0],a[1],a[2]}……{a[0],a[1],……a[n]}共n个

     以a[1]开始: {a[1]}, {a[1],a[2]},{a[1],a[2],a[3]}……{a[1],a[2],……a[n]}共n-1个

     ……

     以a[n]开始:{a[n]}共1个

     一共(n+1)*n/2个连续子段,使用枚举,那么应该可以得到以下算法:
     具体代码如下:

//3d4-1 最大子段和问题的简单算法
#include "stdafx.h"
#include <iostream> 
using namespace std; 

int MaxSum(int n,int *a,int& besti,int& bestj);

int main()
{
	int a[] = {-2,11,-4,13,-5,-2};

	for(int i=0; i<6; i++)
	{
		cout<<a[i]<<" ";
	}

	int besti,bestj;

	cout<<endl;
	cout<<"数组a的最大连续子段和为:a["<<besti<<":"<<bestj<<"]:"<<MaxSum(6,a,besti,bestj)<<endl;

	return 0;
}

int MaxSum(int n,int *a,int& besti,int& bestj)
{	
	int sum = 0;
	for(int i=0; i<n; i++)//控制求和起始项
	{
		for(int j=i; j<n; j++)//控制求和结束项
		{
			int thissum = 0;
			for(int k=i; k<=j; k++)//求和
			{
				thissum += a[k];
			}

			if(thissum>sum)//求最大子段和
			{
				sum = thissum;
				besti = i;
				bestj = j;
			}
		}
	}
	return sum;
}

            从这个算法的三个for循环可以看出,它所需要的计算时间是O(n^3)。事实上,如果注意到,则可将算法中的最后一个for循环省去,避免重复计算,从而使算法得以改进。改进后的代码如下:

//3d4-2 最大子段和问题的避免重复的简单算法
#include "stdafx.h"
#include <iostream> 
using namespace std; 

int MaxSum(int n,int *a,int& besti,int& bestj);

int main()
{
	int a[] = {-2,11,-4,13,-5,-2};

	for(int i=0; i<6; i++)
	{
		cout<<a[i]<<" ";
	}

	int besti,bestj;

	cout<<endl;
	cout<<"数组a
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值