1、拉斯维加斯(Las Vegas)算法
拉斯维加斯算法不会得到不正确的解。一旦用拉斯维加斯算法找到一个解,这个解就一定是正确解。但有时用拉斯维加斯算法找不到解。与蒙特卡罗算法类似,拉斯维加斯算法找到正确解的概率随着它所用的计算时间的增加而提高。对于所求解问题的任一实例,用同一拉斯维加斯算法反复对该实例求解足够多次,可使求解失败的概率任意小。拉斯维加斯算法的一个显著特征是它所作的随机性决策有可能导致算法找不到所需的解。
void obstinate(Object x, Object y)
{// 反复调用拉斯维加斯算法LV(x,y),直到找到问题的一个解y
bool success= false;
while (!success) success=lv(x,y);
}
设p(x)是对输入x调用拉斯维加斯算法获得问题的一个解的概率。一个正确的拉斯维加斯算法应该对所有输入x均有p(x)>0。设t(x)是算法obstinate找到具体实例x的一个解所需的平均时间 ,s(x)和e(x)分别是算法对于具体实例x求解成功或求解失败所需的平均时间,则有。解此方程得:
2、n后问题
问题描速:在n×n格的棋盘上放置彼此不受攻击的n个皇后。按照国际象棋的