关闭

LeetCode || Permutation Sequence

标签: LeetCodePermutation Sequence
328人阅读 评论(0) 收藏 举报
分类:

The set [1,2,3,…,n] contains a total of n! unique permutations.

By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):

  1. "123"
  2. "132"
  3. "213"
  4. "231"
  5. "312"
  6. "321"

Given n and k, return the kth permutation sequence.

Note: Given n will be between 1 and 9 inclusive.

这个题折磨了好几天,不能按顺序一个一个的求了,那样时间复杂度太高了

后来在这个博客里看到了方法:

假设有n个元素,第K个permutation是
a1, a2, a3, .....   ..., an
那么a1是哪一个数字呢?

那么这里,我们把a1去掉,那么剩下的permutation为
a2, a3, .... .... an, 共计n-1个元素。 n-1个元素共有(n-1)!组排列,那么这里就可以知道
设变量K1 = K
a1 = K1 / (n-1)!   // 第一位的选择下标

同理,a2的值可以推导为

K2 = K1 % (n-1)!
a2 = K2 / (n-2)!

。。。。。

K(n-1) = K(n-2) /2!
a(n-1) = K(n-1) / 1!

an = K(n-1)

所以代码如下:

class Solution {
public:
    string getPermutation(int n, int k) {

		string permSueq;
		if(n>9)
			return permSueq;
		int factor=getFactorial(n);
		vector<char> char_v;
		for(int i=1;i<=n;++i)
		{
			char_v.push_back(getChar(i));
		}
		--k;//别忘了首先减一下,由于数组索引是从0开始的
		while(n>0)
		{
			factor/=n;
			int pos=(k/factor)%char_v.size();
			vector<char>::iterator iter=char_v.begin()+pos;
			permSueq.push_back(*iter);
			char_v.erase(iter);//删除已经使用了的数字,这样不会影响下次循环
			k%=factor;
			--n;
		}
		return permSueq;
	}
private:
	//阶乘
	int getFactorial(int n)
	{
		if(n==1||n==0)
			return 1;
		else
			return n*getFactorial(n-1);
	}

	char getChar(int n)
	{
		switch(n)
		{
			case 1:
			return '1';
			case 2:
			return '2';
			case 3:
			return '3';
			case 4:
			return '4';
			case 5:
			return '5';
			case 6:
			return '6';
			case 7:
			return '7';
			case 8:
			return '8';
			case 9:
			return '9';
			default:
			return 'a';
		}
	}
};


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:54173次
    • 积分:919
    • 等级:
    • 排名:千里之外
    • 原创:29篇
    • 转载:34篇
    • 译文:1篇
    • 评论:4条
    文章分类
    最新评论