【完全版】线段树

在代码前先介绍一些我的线段树风格:

  • maxn是题目给的最大区间,而节点数要开4倍,确切的来说节点数要开大于maxn的最小2x的两倍
  • lson和rson分辨表示结点的左儿子和右儿子,由于每次传参数的时候都固定是这几个变量,所以可以用预定于比较方便的表示
  • 以前的写法是另外开两个个数组记录每个结点所表示的区间,其实这个区间不必保存,一边算一边传下去就行,只需要写函数的时候多两个参数,结合lson和rson的预定义可以很方便
  • PushUP(int rt)是把当前结点的信息更新到父结点
  • PushDown(int rt)是把当前结点的信息更新给儿子结点
  • rt表示当前子树的根(root),也就是当前所在的结点

整理这些题目后我觉得线段树的题目整体上可以分成以下四个部分:

  • 单点更新:最最基础的线段树,只更新叶子节点,然后把信息用PushUP(int r)这个函数更新上来

    • hdu1166 敌兵布阵
      题意:O(-1)
      思路:O(-1)
      线段树功能:update:单点增减 query:区间求和
      [cpp]  view plain copy
      1. #include <cstdio>  
      2.    
      3. #define lson l , m , rt << 1  
      4. #define rson m + 1 , r , rt << 1 | 1  
      5. const int maxn = 55555;  
      6. int sum[maxn<<2];  
      7. void PushUP(int rt) {  
      8.     sum[rt] = sum[rt<<1] + sum[rt<<1|1];  
      9. }  
      10. void build(int l,int r,int rt) {  
      11.     if (l == r) {  
      12.         scanf("%d",&sum[rt]);  
      13.         return ;  
      14.     }  
      15.     int m = (l + r) >> 1;  
      16.     build(lson);  
      17.     build(rson);  
      18.     PushUP(rt);  
      19. }  
      20. void update(int p,int add,int l,int r,int rt) {  
      21.     if (l == r) {  
      22.         sum[rt] += add;  
      23.         return ;  
      24.     }  
      25.     int m = (l + r) >> 1;  
      26.     if (p <= m) update(p , add , lson);  
      27.     else update(p , add , rson);  
      28.     PushUP(rt);  
      29. }  
      30. int query(int L,int R,int l,int r,int rt) {  
      31.     if (L <= l && r <= R) {  
      32.         return sum[rt];  
      33.     }  
      34.     int m = (l + r) >> 1;  
      35.     int ret = 0;  
      36.     if (L <= m) ret += query(L , R , lson);  
      37.     if (R > m) ret += query(L , R , rson);  
      38.     return ret;  
      39. }  
      40. int main() {  
      41.     int T , n;  
      42.     scanf("%d",&T);  
      43.     for (int cas = 1 ; cas <= T ; cas ++) {  
      44.         printf("Case %d:\n",cas);  
      45.         scanf("%d",&n);  
      46.         build(1 , n , 1);  
      47.         char op[10];  
      48.         while (scanf("%s",op)) {  
      49.             if (op[0] == 'E'break;  
      50.             int a , b;  
      51.             scanf("%d%d",&a,&b);  
      52.             if (op[0] == 'Q') printf("%d\n",query(a , b , 1 , n , 1));  
      53.             else if (op[0] == 'S') update(a , -b , 1 , n , 1);  
      54.             else update(a , b , 1 , n , 1);  
      55.         }  
      56.     }  
      57.     return 0;  
      58. }  

    • hdu1754 I Hate It
      题意:O(-1)
      思路:O(-1)
      线段树功能:update:单点替换 query:区间最值
      [cpp]  view plain copy
      1. #include <cstdio>  
      2. #include <algorithm>  
      3. using namespace std;  
      4.    
      5. #define lson l , m , rt << 1  
      6. #define rson m + 1 , r , rt << 1 | 1  
      7. const int maxn = 222222;  
      8. int MAX[maxn<<2];  
      9. void PushUP(int rt) {  
      10.     MAX[rt] = max(MAX[rt<<1] , MAX[rt<<1|1]);  
      11. }  
      12. void build(int l,int r,int rt) {  
      13.     if (l == r) {  
      14.         scanf("%d",&MAX[rt]);  
      15.         return ;  
      16.     }  
      17.     int m = (l + r) >> 1;  
      18.     build(lson);  
      19.     build(rson);  
      20.     PushUP(rt);  
      21. }  
      22. void update(int p,int sc,int l,int r,int rt) {  
      23.     if (l == r) {  
      24.         MAX[rt] = sc;  
      25.         return ;  
      26.     }  
      27.     int m = (l + r) >> 1;  
      28.     if (p <= m) update(p , sc , lson);  
      29.     else update(p , sc , rson);  
      30.     PushUP(rt);  
      31. }  
      32. int query(int L,int R,int l,int r,int rt) {  
      33.     if (L <= l && r <= R) {  
      34.         return MAX[rt];  
      35.     }  
      36.     int m = (l + r) >> 1;  
      37.     int ret = 0;  
      38.     if (L <= m) ret = max(ret , query(L , R , lson));  
      39.     if (R > m) ret = max(ret , query(L , R , rson));  
      40.     return ret;  
      41. }  
      42. int main() {  
      43.     int n , m;  
      44.     while (~scanf("%d%d",&n,&m)) {  
      45.         build(1 , n , 1);  
      46.         while (m --) {  
      47.             char op[2];  
      48.             int a , b;  
      49.             scanf("%s%d%d",op,&a,&b);  
      50.             if (op[0] == 'Q') printf("%d\n",query(a , b , 1 , n , 1));  
      51.             else update(a , b , 1 , n , 1);  
      52.         }  
      53.     }  
      54.     return 0;  
      55. }  

    • hdu1394 Minimum Inversion Number
      题意:求Inversion后的最小逆序数
      思路:用O(nlogn)复杂度求出最初逆序数后,就可以用O(1)的复杂度分别递推出其他解
      线段树功能:update:单点增减 query:区间求和
      [cpp]  view plain copy
      1. #include <cstdio>  
      2. #include <algorithm>  
      3. using namespace std;  
      4.    
      5. #define lson l , m , rt << 1  
      6. #define rson m + 1 , r , rt << 1 | 1  
      7. const int maxn = 5555;  
      8. int sum[maxn<<2];  
      9. void PushUP(int rt) {  
      10.     sum[rt] = sum[rt<<1] + sum[rt<<1|1];  
      11. }  
      12. void build(int l,int r,int rt) {  
      13.     sum[rt] = 0;  
      14.     if (l == r) return ;  
      15.     int m = (l + r) >> 1;  
      16.     build(lson);  
      17.     build(rson);  
      18. }  
      19. void update(int p,int l,int r,int rt) {  
      20.     if (l == r) {  
      21.         sum[rt] ++;  
      22.         return ;  
      23.     }  
      24.     int m = (l + r) >> 1;  
      25.     if (p <= m) update(p , lson);  
      26.     else update(p , rson);  
      27.     PushUP(rt);  
      28. }  
      29. int query(int L,int R,int l,int r,int rt) {  
      30.     if (L <= l && r <= R) {  
      31.         return sum[rt];  
      32.     }  
      33.     int m = (l + r) >> 1;  
      34.     int ret = 0;  
      35.     if (L <= m) ret += query(L , R , lson);  
      36.     if (R > m) ret += query(L , R , rson);  
      37.     return ret;  
      38. }  
      39. int x[maxn];  
      40. int main() {  
      41.     int n;  
      42.     while (~scanf("%d",&n)) {  
      43.         build(0 , n - 1 , 1);  
      44.         int sum = 0;  
      45.         for (int i = 0 ; i < n ; i ++) {  
      46.             scanf("%d",&x[i]);  
      47.             sum += query(x[i] , n - 1 , 0 , n - 1 , 1);  
      48.             update(x[i] , 0 , n - 1 , 1);  
      49.         }  
      50.         int ret = sum;  
      51.         for (int i = 0 ; i < n ; i ++) {  
      52.             sum += n - x[i] - x[i] - 1;  
      53.             ret = min(ret , sum);  
      54.         }  
      55.         printf("%d\n",ret);  
      56.     }  
      57.     return 0;  
      58. }  

    • hdu2795 Billboard
      题意:h*w的木板,放进一些1*L的物品,求每次放空间能容纳且最上边的位子
      思路:每次找到最大值的位子,然后减去L
      线段树功能:query:区间求最大值的位子(直接把update的操作在query里做了)
      [cpp]  view plain copy
      1. #include <cstdio>  
      2. #include <algorithm>  
      3. using namespace std;  
      4.    
      5. #define lson l , m , rt << 1  
      6. #define rson m + 1 , r , rt << 1 | 1  
      7. const int maxn = 222222;  
      8. int h , w , n;  
      9. int MAX[maxn<<2];  
      10. void PushUP(int rt) {  
      11.     MAX[rt] = max(MAX[rt<<1] , MAX[rt<<1|1]);  
      12. }  
      13. void build(int l,int r,int rt) {  
      14.     MAX[rt] = w;  
      15.     if (l == r) return ;  
      16.     int m = (l + r) >> 1;  
      17.     build(lson);  
      18.     build(rson);  
      19. }  
      20. int query(int x,int l,int r,int rt) {  
      21.     if (l == r) {  
      22.         MAX[rt] -= x;  
      23.         return l;  
      24.     }  
      25.     int m = (l + r) >> 1;  
      26.     int ret = (MAX[rt<<1] >= x) ? query(x , lson) : query(x , rson);  
      27.     PushUP(rt);  
      28.     return ret;  
      29. }  
      30. int main() {  
      31.     while (~scanf("%d%d%d",&h,&w,&n)) {  
      32.         if (h > n) h = n;  
      33.         build(1 , h , 1);  
      34.         while (n --) {  
      35.             int x;  
      36.             scanf("%d",&x);  
      37.             if (MAX[1] < x) puts("-1");  
      38.             else printf("%d\n",query(x , 1 , h , 1));  
      39.         }  
      40.     }  
      41.     return 0;  
      42. }  
      练习:
    • poj2828 Buy Tickets
      poj2886 Who Gets the Most Candies?
  • 成段更新(通常这对初学者来说是一道坎),需要用到延迟标记(或者说懒惰标记),简单来说就是每次更新的时候不要更新到底,用延迟标记使得更新延迟到下次需要更新or询问到的时候

    • hdu1698 Just a Hook
      题意:O(-1)
      思路:O(-1)
      线段树功能:update:成段替换 (由于只query一次总区间,所以可以直接输出1结点的信息)
      [cpp]  view plain copy
      1. #include <cstdio>  
      2. #include <algorithm>  
      3. using namespace std;  
      4.    
      5. #define lson l , m , rt << 1  
      6. #define rson m + 1 , r , rt << 1 | 1  
      7. const int maxn = 111111;  
      8. int h , w , n;  
      9. int col[maxn<<2];  
      10. int sum[maxn<<2];  
      11. void PushUp(int rt) {  
      12.     sum[rt] = sum[rt<<1] + sum[rt<<1|1];  
      13. }  
      14. void PushDown(int rt,int m) {  
      15.     if (col[rt]) {  
      16.         col[rt<<1] = col[rt<<1|1] = col[rt];  
      17.         sum[rt<<1] = (m - (m >> 1)) * col[rt];  
      18.         sum[rt<<1|1] = (m >> 1) * col[rt];  
      19.         col[rt] = 0;  
      20.     }  
      21. }  
      22. void build(int l,int r,int rt) {  
      23.     col[rt] = 0;  
      24.     sum[rt] = 1;  
      25.     if (l == r) return ;  
      26.     int m = (l + r) >> 1;  
      27.     build(lson);  
      28.     build(rson);  
      29.     PushUp(rt);  
      30. }  
      31. void update(int L,int R,int c,int l,int r,int rt) {  
      32.     if (L <= l && r <= R) {  
      33.         col[rt] = c;  
      34.         sum[rt] = c * (r - l + 1);  
      35.         return ;  
      36.     }  
      37.     PushDown(rt , r - l + 1);  
      38.     int m = (l + r) >> 1;  
      39.     if (L <= m) update(L , R , c , lson);  
      40.     if (R > m) update(L , R , c , rson);  
      41.     PushUp(rt);  
      42. }  
      43. int main() {  
      44.     int T , n , m;  
      45.     scanf("%d",&T);  
      46.     for (int cas = 1 ; cas <= T ; cas ++) {  
      47.         scanf("%d%d",&n,&m);  
      48.         build(1 , n , 1);  
      49.         while (m --) {  
      50.             int a , b , c;  
      51.             scanf("%d%d%d",&a,&b,&c);  
      52.             update(a , b , c , 1 , n , 1);  
      53.         }  
      54.         printf("Case %d: The total value of the hook is %d.\n",cas , sum[1]);  
      55.     }  
      56.     return 0;  
      57. }  

    • poj3468 A Simple Problem with Integers
    • 题意:O(-1)
      思路:O(-1)
      线段树功能:update:成段增减 query:区间求和
      [cpp]  view plain copy
      1. #include <cstdio>  
      2. #include <algorithm>  
      3. using namespace std;  
      4.    
      5. #define lson l , m , rt << 1  
      6. #define rson m + 1 , r , rt << 1 | 1  
      7. #define LL long long  
      8. const int maxn = 111111;  
      9. LL add[maxn<<2];  
      10. LL sum[maxn<<2];  
      11. void PushUp(int rt) {  
      12.     sum[rt] = sum[rt<<1] + sum[rt<<1|1];  
      13. }  
      14. void PushDown(int rt,int m) {  
      15.     if (add[rt]) {  
      16.         add[rt<<1] += add[rt];  
      17.         add[rt<<1|1] += add[rt];  
      18.         sum[rt<<1] += add[rt] * (m - (m >> 1));  
      19.         sum[rt<<1|1] += add[rt] * (m >> 1);  
      20.         add[rt] = 0;  
      21.     }  
      22. }  
      23. void build(int l,int r,int rt) {  
      24.     add[rt] = 0;  
      25.     if (l == r) {  
      26.         scanf("%lld",&sum[rt]);  
      27.         return ;  
      28.     }  
      29.     int m = (l + r) >> 1;  
      30.     build(lson);  
      31.     build(rson);  
      32.     PushUp(rt);  
      33. }  
      34. void update(int L,int R,int c,int l,int r,int rt) {  
      35.     if (L <= l && r <= R) {  
      36.         add[rt] += c;  
      37.         sum[rt] += (LL)c * (r - l + 1);  
      38.         return ;  
      39.     }  
      40.     PushDown(rt , r - l + 1);  
      41.     int m = (l + r) >> 1;  
      42.     if (L <= m) update(L , R , c , lson);  
      43.     if (m < R) update(L , R , c , rson);  
      44.     PushUp(rt);  
      45. }  
      46. LL query(int L,int R,int l,int r,int rt) {  
      47.     if (L <= l && r <= R) {  
      48.         return sum[rt];  
      49.     }  
      50.     PushDown(rt , r - l + 1);  
      51.     int m = (l + r) >> 1;  
      52.     LL ret = 0;  
      53.     if (L <= m) ret += query(L , R , lson);  
      54.     if (m < R) ret += query(L , R , rson);  
      55.     return ret;  
      56. }  
      57. int main() {  
      58.     int N , Q;  
      59.     scanf("%d%d",&N,&Q);  
      60.     build(1 , N , 1);  
      61.     while (Q --) {  
      62.         char op[2];  
      63.         int a , b , c;  
      64.         scanf("%s",op);  
      65.         if (op[0] == 'Q') {  
      66.             scanf("%d%d",&a,&b);  
      67.             printf("%lld\n",query(a , b , 1 , N , 1));  
      68.         } else {  
      69.             scanf("%d%d%d",&a,&b,&c);  
      70.             update(a , b , c , 1 , N , 1);  
      71.         }  
      72.     }  
      73.     return 0;  
      74. }  

    • poj2528 Mayor’s posters
    • 题意:在墙上贴海报,海报可以互相覆盖,问最后可以看见几张海报
      思路:这题数据范围很大,直接搞超时+超内存,需要离散化:
      离散化简单的来说就是只取我们需要的值来用,比如说区间[1000,2000],[1990,2012] 我们用不到[-∞,999][1001,1989][1991,1999][2001,2011][2013,+∞]这些值,所以我只需要1000,1990,2000,2012就够了,将其分别映射到0,1,2,3,在于复杂度就大大的降下来了
      所以离散化要保存所有需要用到的值,排序后,分别映射到1~n,这样复杂度就会小很多很多
      而这题的难点在于每个数字其实表示的是一个单位长度(并非一个点),这样普通的离散化会造成许多错误(包括我以前的代码,poj这题数据奇弱)
      给出下面两个简单的例子应该能体现普通离散化的缺陷:
      例子一:1-10 1-4 5-10
      例子二:1-10 1-4 6-10
      普通离散化后都变成了[1,4][1,2][3,4]
      线段2覆盖了[1,2],线段3覆盖了[3,4],那么线段1是否被完全覆盖掉了呢?
      例子一是完全被覆盖掉了,而例子二没有被覆盖

      为了解决这种缺陷,我们可以在排序后的数组上加些处理,比如说[1,2,6,10]
      如果相邻数字间距大于1的话,在其中加上任意一个数字,比如加成[1,2,3,6,7,10],然后再做线段树就好了.
      线段树功能:update:成段替换 query:简单hash

      [cpp]  view plain copy
      1. #include <cstdio>  
      2. #include <cstring>  
      3. #include <algorithm>  
      4. using namespace std;  
      5. #define lson l , m , rt << 1  
      6. #define rson m + 1 , r , rt << 1 | 1  
      7.    
      8. const int maxn = 11111;  
      9. bool hash[maxn];  
      10. int li[maxn] , ri[maxn];  
      11. int X[maxn*3];  
      12. int col[maxn<<4];  
      13. int cnt;  
      14.    
      15. void PushDown(int rt) {  
      16.     if (col[rt] != -1) {  
      17.         col[rt<<1] = col[rt<<1|1] = col[rt];  
      18.         col[rt] = -1;  
      19.     }  
      20. }  
      21. void update(int L,int R,int c,int l,int r,int rt) {  
      22.     if (L <= l && r <= R) {  
      23.         col[rt] = c;  
      24.         return ;  
      25.     }  
      26.     PushDown(rt);  
      27.     int m = (l + r) >> 1;  
      28.     if (L <= m) update(L , R , c , lson);  
      29.     if (m < R) update(L , R , c , rson);  
      30. }  
      31. void query(int l,int r,int rt) {  
      32.     if (col[rt] != -1) {  
      33.         if (!hash[col[rt]]) cnt ++;  
      34.         hash[ col[rt] ] = true;  
      35.         return ;  
      36.     }  
      37.     if (l == r) return ;  
      38.     int m = (l + r) >> 1;  
      39.     query(lson);  
      40.     query(rson);  
      41. }  
      42. int Bin(int key,int n,int X[]) {  
      43.     int l = 0 , r = n - 1;  
      44.     while (l <= r) {  
      45.         int m = (l + r) >> 1;  
      46.         if (X[m] == key) return m;  
      47.         if (X[m] < key) l = m + 1;  
      48.         else r = m - 1;  
      49.     }  
      50.     return -1;  
      51. }  
      52. int main() {  
      53.     int T , n;  
      54.     scanf("%d",&T);  
      55.     while (T --) {  
      56.         scanf("%d",&n);  
      57.         int nn = 0;  
      58.         for (int i = 0 ; i < n ; i ++) {  
      59.             scanf("%d%d",&li[i] , &ri[i]);  
      60.             X[nn++] = li[i];  
      61.             X[nn++] = ri[i];  
      62.         }  
      63.         sort(X , X + nn);  
      64.         int m = 1;  
      65.         for (int i = 1 ; i < nn; i ++) {  
      66.             if (X[i] != X[i-1]) X[m ++] = X[i];  
      67.         }  
      68.         for (int i = m - 1 ; i > 0 ; i --) {  
      69.             if (X[i] != X[i-1] + 1) X[m ++] = X[i-1] + 1;  
      70.         }  
      71.         sort(X , X + m);  
      72.         memset(col , -1 , sizeof(col));  
      73.         for (int i = 0 ; i < n ; i ++) {  
      74.             int l = Bin(li[i] , m , X);  
      75.             int r = Bin(ri[i] , m , X);  
      76.             update(l , r , i , 0 , m , 1);  
      77.         }  
      78.         cnt = 0;  
      79.         memset(hash , false , sizeof(hash));  
      80.         query(0 , m , 1);  
      81.         printf("%d\n",cnt);  
      82.     }  
      83.     return 0;  
      84. }  

    • poj3225 Help with Intervals
      题意:区间操作,交,并,补等
      思路:
      我们一个一个操作来分析:(用0和1表示是否包含区间,-1表示该区间内既有包含又有不包含)
      U:把区间[l,r]覆盖成1
      I:把[-∞,l)(r,∞]覆盖成0
      D:把区间[l,r]覆盖成0
      C:把[-∞,l)(r,∞]覆盖成0 , 且[l,r]区间0/1互换
      S:[l,r]区间0/1互换

      成段覆盖的操作很简单,比较特殊的就是区间0/1互换这个操作,我们可以称之为异或操作
      很明显我们可以知道这个性质:当一个区间被覆盖后,不管之前有没有异或标记都没有意义了
      所以当一个节点得到覆盖标记时把异或标记清空
      而当一个节点得到异或标记的时候,先判断覆盖标记,如果是0或1,直接改变一下覆盖标记,不然的话改变异或标记

      开区间闭区间只要数字乘以2就可以处理(偶数表示端点,奇数表示两端点间的区间)
      线段树功能:update:成段替换,区间异或 query:简单hash

      [cpp]  view plain copy
      1. #include <cstdio>  
      2. #include <cstring>  
      3. #include <cctype>  
      4. #include <algorithm>  
      5. using namespace std;  
      6. #define lson l , m , rt << 1  
      7. #define rson m + 1 , r , rt << 1 | 1  
      8.    
      9. const int maxn = 131072;  
      10. bool hash[maxn+1];  
      11. int cover[maxn<<2];  
      12. int XOR[maxn<<2];  
      13. void FXOR(int rt) {  
      14.     if (cover[rt] != -1) cover[rt] ^= 1;  
      15.     else XOR[rt] ^= 1;  
      16. }  
      17. void PushDown(int rt) {  
      18.     if (cover[rt] != -1) {  
      19.         cover[rt<<1] = cover[rt<<1|1] = cover[rt];  
      20.         XOR[rt<<1] = XOR[rt<<1|1] = 0;  
      21.         cover[rt] = -1;  
      22.     }  
      23.     if (XOR[rt]) {  
      24.         FXOR(rt<<1);  
      25.         FXOR(rt<<1|1);  
      26.         XOR[rt] = 0;  
      27.     }  
      28. }  
      29. void update(char op,int L,int R,int l,int r,int rt) {  
      30.     if (L <= l && r <= R) {  
      31.         if (op == 'U') {  
      32.             cover[rt] = 1;  
      33.             XOR[rt] = 0;  
      34.         } else if (op == 'D') {  
      35.             cover[rt] = 0;  
      36.             XOR[rt] = 0;  
      37.         } else if (op == 'C' || op == 'S') {  
      38.             FXOR(rt);  
      39.         }  
      40.         return ;  
      41.     }  
      42.     PushDown(rt);  
      43.     int m = (l + r) >> 1;  
      44.     if (L <= m) update(op , L , R , lson);  
      45.     else if (op == 'I' || op == 'C') {  
      46.         XOR[rt<<1] = cover[rt<<1] = 0;  
      47.     }  
      48.     if (m < R) update(op , L , R , rson);  
      49.     else if (op == 'I' || op == 'C') {  
      50.         XOR[rt<<1|1] = cover[rt<<1|1] = 0;  
      51.     }  
      52. }  
      53. void query(int l,int r,int rt) {  
      54.     if (cover[rt] == 1) {  
      55.         for (int it = l ; it <= r ; it ++) {  
      56.             hash[it] = true;  
      57.         }  
      58.         return ;  
      59.     } else if (cover[rt] == 0) return ;  
      60.     if (l == r) return ;  
      61.     PushDown(rt);  
      62.     int m = (l + r) >> 1;  
      63.     query(lson);  
      64.     query(rson);  
      65. }  
      66. int main() {  
      67.     cover[1] = XOR[1] = 0;  
      68.     char op , l , r;  
      69.     int a , b;  
      70.     while ( ~scanf("%c %c%d,%d%c\n",&op , &l , &a , &b , &r) ) {  
      71.         a <<= 1 , b <<= 1;  
      72.         if (l == '(') a ++;  
      73.         if (r == ')') b --;  
      74.         if (a > b) {  
      75.             if (op == 'C' || op == 'I') {  
      76.                 cover[1] = XOR[1] = 0;  
      77.             }  
      78.         } else update(op , a , b , 0 , maxn , 1);  
      79.     }  
      80.     query(0 , maxn , 1);  
      81.     bool flag = false;  
      82.     int s = -1 , e;  
      83.     for (int i = 0 ; i <= maxn ; i ++) {  
      84.         if (hash[i]) {  
      85.             if (s == -1) s = i;  
      86.             e = i;  
      87.         } else {  
      88.             if (s != -1) {  
      89.                 if (flag) printf(" ");  
      90.                 flag = true;  
      91.                 printf("%c%d,%d%c",s&1?'(':'[' , s>>1 , (e+1)>>1 , e&1?')':']');  
      92.                 s = -1;  
      93.             }  
      94.         }  
      95.     }  
      96.     if (!flag) printf("empty set");  
      97.     puts("");  
      98.     return 0;  
      99. }  

    • poj1436 Horizontally Visible Segments
      poj2991 Crane
      Another LCIS
      Bracket Sequence
  • 区间合并
    这类题目会询问区间中满足条件的连续最长区间,所以PushUp的时候需要对左右儿子的区间进行合并

    • poj3667 Hotel
      题意:1 a:询问是不是有连续长度为a的空房间,有的话住进最左边
      2 a b:将[a,a+b-1]的房间清空
      思路:记录区间中最长的空房间
      线段树操作:update:区间替换 query:询问满足条件的最左断点
      [cpp]  view plain copy
      1. #include <cstdio>  
      2. #include <cstring>  
      3. #include <cctype>  
      4. #include <algorithm>  
      5. using namespace std;  
      6. #define lson l , m , rt << 1  
      7. #define rson m + 1 , r , rt << 1 | 1  
      8.    
      9. const int maxn = 55555;  
      10. int lsum[maxn<<2] , rsum[maxn<<2] , msum[maxn<<2];  
      11. int cover[maxn<<2];  
      12.    
      13. void PushDown(int rt,int m) {  
      14.     if (cover[rt] != -1) {  
      15.         cover[rt<<1] = cover[rt<<1|1] = cover[rt];  
      16.         msum[rt<<1] = lsum[rt<<1] = rsum[rt<<1] = cover[rt] ? 0 : m - (m >> 1);  
      17.         msum[rt<<1|1] = lsum[rt<<1|1] = rsum[rt<<1|1] = cover[rt] ? 0 : (m >> 1);  
      18.         cover[rt] = -1;  
      19.     }  
      20. }  
      21. void PushUp(int rt,int m) {  
      22.     lsum[rt] = lsum[rt<<1];  
      23.     rsum[rt] = rsum[rt<<1|1];  
      24.     if (lsum[rt] == m - (m >> 1)) lsum[rt] += lsum[rt<<1|1];  
      25.     if (rsum[rt] == (m >> 1)) rsum[rt] += rsum[rt<<1];  
      26.     msum[rt] = max(lsum[rt<<1|1] + rsum[rt<<1] , max(msum[rt<<1] , msum[rt<<1|1]));  
      27. }  
      28. void build(int l,int r,int rt) {  
      29.     msum[rt] = lsum[rt] = rsum[rt] = r - l + 1;  
      30.     cover[rt] = -1;  
      31.     if (l == r) return ;  
      32.     int m = (l + r) >> 1;  
      33.     build(lson);  
      34.     build(rson);  
      35. }  
      36. void update(int L,int R,int c,int l,int r,int rt) {  
      37.     if (L <= l && r <= R) {  
      38.         msum[rt] = lsum[rt] = rsum[rt] = c ? 0 : r - l + 1;  
      39.         cover[rt] = c;  
      40.         return ;  
      41.     }  
      42.     PushDown(rt , r - l + 1);  
      43.     int m = (l + r) >> 1;  
      44.     if (L <= m) update(L , R , c , lson);  
      45.     if (m < R) update(L , R , c , rson);  
      46.     PushUp(rt , r - l + 1);  
      47. }  
      48. int query(int w,int l,int r,int rt) {  
      49.     if (l == r) return l;  
      50.     PushDown(rt , r - l + 1);  
      51.     int m = (l + r) >> 1;  
      52.     if (msum[rt<<1] >= w) return query(w , lson);  
      53.     else if (rsum[rt<<1] + lsum[rt<<1|1] >= w) return m - rsum[rt<<1] + 1;  
      54.     return query(w , rson);  
      55. }  
      56. int main() {  
      57.     int n , m;  
      58.     scanf("%d%d",&n,&m);  
      59.     build(1 , n , 1);  
      60.     while (m --) {  
      61.         int op , a , b;  
      62.         scanf("%d",&op);  
      63.         if (op == 1) {  
      64.             scanf("%d",&a);  
      65.             if (msum[1] < a) puts("0");  
      66.             else {  
      67.                 int p = query(a , 1 , n , 1);  
      68.                 printf("%d\n",p);  
      69.                 update(p , p + a - 1 , 1 , 1 , n , 1);  
      70.             }  
      71.         } else {  
      72.             scanf("%d%d",&a,&b);  
      73.             update(a , a + b - 1 , 0 , 1 , n , 1);  
      74.         }  
      75.     }  
      76.     return 0;  
      77. }  

    •  练习
      hdu3308 LCIS
      hdu3397 Sequence operation
      hdu2871 Memory Control
      hdu1540 Tunnel Warfare
      CF46-D Parking Lot
  • 扫描线
    这类题目需要将一些操作排序,然后从左到右用一根扫描线(当然是在我们脑子里)扫过去
    最典型的就是矩形面积并,周长并等题

    • hdu1542 Atlantis
      题意:矩形面积并
      思路:浮点数先要离散化;然后把矩形分成两条边,上边和下边,对横轴建树,然后从下到上扫描上去,用cnt表示该区间下边比上边多几个,sum代表该区间内被覆盖的线段的长度总和
      这里线段树的一个结点并非是线段的一个端点,而是该端点和下一个端点间的线段,所以题目中r+1,r-1的地方可以自己好好的琢磨一下
      线段树操作:update:区间增减 query:直接取根节点的值
      [cpp]  view plain copy
      1. #include <cstdio>  
      2. #include <cstring>  
      3. #include <cctype>  
      4. #include <algorithm>  
      5. using namespace std;  
      6. #define lson l , m , rt << 1  
      7. #define rson m + 1 , r , rt << 1 | 1  
      8.    
      9. const int maxn = 2222;  
      10. int cnt[maxn << 2];  
      11. double sum[maxn << 2];  
      12. double X[maxn];  
      13. struct Seg {  
      14.     double h , l , r;  
      15.     int s;  
      16.     Seg(){}  
      17.     Seg(double a,double b,double c,int d) : l(a) , r(b) , h(c) , s(d) {}  
      18.     bool operator < (const Seg &cmp) const {  
      19.         return h < cmp.h;  
      20.     }  
      21. }ss[maxn];  
      22. void PushUp(int rt,int l,int r) {  
      23.     if (cnt[rt]) sum[rt] = X[r+1] - X[l];  
      24.     else if (l == r) sum[rt] = 0;  
      25.     else sum[rt] = sum[rt<<1] + sum[rt<<1|1];  
      26. }  
      27. void update(int L,int R,int c,int l,int r,int rt) {  
      28.     if (L <= l && r <= R) {  
      29.         cnt[rt] += c;  
      30.         PushUp(rt , l , r);  
      31.         return ;  
      32.     }  
      33.     int m = (l + r) >> 1;  
      34.     if (L <= m) update(L , R , c , lson);  
      35.     if (m < R) update(L , R , c , rson);  
      36.     PushUp(rt , l , r);  
      37. }  
      38. int Bin(double key,int n,double X[]) {  
      39.     int l = 0 , r = n - 1;  
      40.     while (l <= r) {  
      41.         int m = (l + r) >> 1;  
      42.         if (X[m] == key) return m;  
      43.         if (X[m] < key) l = m + 1;  
      44.         else r = m - 1;  
      45.     }  
      46.     return -1;  
      47. }  
      48. int main() {  
      49.     int n , cas = 1;  
      50.     while (~scanf("%d",&n) && n) {  
      51.         int m = 0;  
      52.         while (n --) {  
      53.             double a , b , c , d;  
      54.             scanf("%lf%lf%lf%lf",&a,&b,&c,&d);  
      55.             X[m] = a;  
      56.             ss[m++] = Seg(a , c , b , 1);  
      57.             X[m] = c;  
      58.             ss[m++] = Seg(a , c , d , -1);  
      59.         }  
      60.         sort(X , X + m);  
      61.         sort(ss , ss + m);  
      62.         int k = 1;  
      63.         for (int i = 1 ; i < m ; i ++) {  
      64.             if (X[i] != X[i-1]) X[k++] = X[i];  
      65.         }  
      66.         memset(cnt , 0 , sizeof(cnt));  
      67.         memset(sum , 0 , sizeof(sum));  
      68.         double ret = 0;  
      69.         for (int i = 0 ; i < m - 1 ; i ++) {  
      70.             int l = Bin(ss[i].l , k , X);  
      71.             int r = Bin(ss[i].r , k , X) - 1;  
      72.             if (l <= r) update(l , r , ss[i].s , 0 , k - 1, 1);  
      73.             ret += sum[1] * (ss[i+1].h - ss[i].h);  
      74.         }  
      75.         printf("Test case #%d\nTotal explored area: %.2lf\n\n",cas++ , ret);  
      76.     }  
      77.     return 0;  
      78. }  

    • hdu1828 Picture
      题意:矩形周长并
      思路:与面积不同的地方是还要记录竖的边有几个(numseg记录),并且当边界重合的时候需要合并(用lbd和rbd表示边界来辅助)
      线段树操作:update:区间增减 query:直接取根节点的值
      [cpp]  view plain copy
      1. #include <cstdio>  
      2. #include <cstring>  
      3. #include <cctype>  
      4. #include <algorithm>  
      5. using namespace std;  
      6. #define lson l , m , rt << 1  
      7. #define rson m + 1 , r , rt << 1 | 1  
      8.    
      9. const int maxn = 22222;  
      10. struct Seg{  
      11.     int l , r , h , s;  
      12.     Seg() {}  
      13.     Seg(int a,int b,int c,int d):l(a) , r(b) , h(c) , s(d) {}  
      14.     bool operator < (const Seg &cmp) const {  
      15.         if (h == cmp.h) return s > cmp.s;  
      16.         return h < cmp.h;  
      17.     }  
      18. }ss[maxn];  
      19. bool lbd[maxn<<2] , rbd[maxn<<2];  
      20. int numseg[maxn<<2];  
      21. int cnt[maxn<<2];  
      22. int len[maxn<<2];  
      23. void PushUP(int rt,int l,int r) {  
      24.     if (cnt[rt]) {  
      25.         lbd[rt] = rbd[rt] = 1;  
      26.         len[rt] = r - l + 1;  
      27.         numseg[rt] = 2;  
      28.     } else if (l == r) {  
      29.         len[rt] = numseg[rt] = lbd[rt] = rbd[rt] = 0;  
      30.     } else {  
      31.         lbd[rt] = lbd[rt<<1];  
      32.         rbd[rt] = rbd[rt<<1|1];  
      33.         len[rt] = len[rt<<1] + len[rt<<1|1];  
      34.         numseg[rt] = numseg[rt<<1] + numseg[rt<<1|1];  
      35.         if (lbd[rt<<1|1] && rbd[rt<<1]) numseg[rt] -= 2;//两条线重合  
      36.     }  
      37. }  
      38. void update(int L,int R,int c,int l,int r,int rt) {  
      39.     if (L <= l && r <= R) {  
      40.         cnt[rt] += c;  
      41.         PushUP(rt , l , r);  
      42.         return ;  
      43.     }  
      44.     int m = (l + r) >> 1;  
      45.     if (L <= m) update(L , R , c , lson);  
      46.     if (m < R) update(L , R , c , rson);  
      47.     PushUP(rt , l , r);  
      48. }  
      49. int main() {  
      50.     int n;  
      51.     while (~scanf("%d",&n)) {  
      52.         int m = 0;  
      53.         int lbd = 10000, rbd = -10000;  
      54.         for (int i = 0 ; i < n ; i ++) {  
      55.             int a , b , c , d;  
      56.             scanf("%d%d%d%d",&a,&b,&c,&d);  
      57.             lbd = min(lbd , a);  
      58.             rbd = max(rbd , c);  
      59.             ss[m++] = Seg(a , c , b , 1);  
      60.             ss[m++] = Seg(a , c , d , -1);  
      61.         }  
      62.         sort(ss , ss + m);  
      63.         int ret = 0 , last = 0;  
      64.         for (int i = 0 ; i < m ; i ++) {  
      65.             if (ss[i].l < ss[i].r) update(ss[i].l , ss[i].r - 1 , ss[i].s , lbd , rbd - 1 , 1);  
      66.             ret += numseg[1] * (ss[i+1].h - ss[i].h);  
      67.             ret += abs(len[1] - last);  
      68.             last = len[1];  
      69.         }  
      70.         printf("%d\n",ret);  
      71.     }  
      72.     return 0;  
      73. }  

    • 练习
      hdu3265 Posters
      hdu3642 Get The Treasury
      poj2482 Stars in Your Window
      poj2464 Brownie Points II
      hdu3255 Farming 
      ural1707 Hypnotoad's Secret
      uva11983 Weird Advertisement

线段树与其他结合练习(欢迎大家补充):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值