bundle adjustment 光束平差法介绍及其应用

转载 2015年11月18日 10:30:48

来源wiki pedia: http://en.wikipedia.org/wiki/Bundle_adjustment

光束平差法的最终目的归结为:减少观测图像的点和参考图像(预测图像)的点之间位置投影变换(再投影)误差。这最小化误差算法使用的是最小二乘算法,目前

使用最为成功是Levenberg-Marquardt, 它具有易于实现,对大范围的初始估计能够快速收敛的优点。

Bundle adjustment amounts to jointly refining a set of initial camera and structure parameter estimates for finding the set of parameters that most accurately predict the locations of the observed points in the set of available images. More formally, assume that n 3D points are seen in m views and let \mathbf{x}_{ij} be the projection of the ith point on image j. Let \displaystyle v_{ij} denote the binary variables that equal 1 if point i is visible in image j and 0 otherwise. Assume also that each camera j is parameterized by a vector \mathbf{a}_j and each 3D point i by a vector \mathbf{b}_i. Bundle adjustment minimizes the total reprojection error with respect to all 3D point and camera parameters, specifically

\min_{\mathbf{a}_j, \, \mathbf{b}_i} \displaystyle\sum_{i=1}^{n} \; \displaystyle\sum_{j=1}^{m} \; v_{ij} \, d(\mathbf{Q}(\mathbf{a}_j, \, \mathbf{b}_i), \; \mathbf{x}_{ij})^2,

where \mathbf{Q}(\mathbf{a}_j, \, \mathbf{b}_i) is the predicted projection of point i on image j and d(\mathbf{x}, \, \mathbf{y}) denotes the Euclidean distance between the image points represented by vectors \mathbf{x}and \mathbf{y}. Clearly, bundle adjustment is by definition tolerant to missing image projections and minimizes a physically meaningful criterion.

Software

  • sba: A Generic Sparse Bundle Adjustment C/C++ Package Based on the Levenberg–Marquardt Algorithm (CMatlab)
  • ssba: Simple Sparse Bundle Adjustment package based on the Levenberg–Marquardt Algorithm (C) with LGPL license.
  • OpenCv: Computer Vision library in the contrib module.
  • mcba: Multi-Core Bundle Adjustment (CPU/GPU).
  • libdogleg: General-purpose sparse non-linear least squares solver, based on Powell's dogleg method. LGPL.
  • ceres-solver: A Nonlinear Least Squares Minimizer with BSD license

相关文章推荐

bundle adjustment 光束平差法介绍及其应用

来源wiki pedia: http://en.wikipedia.org/wiki/Bundle_adjustment 光束平差法的最终目的归结为:减少观测图像的点和参考图像(预测图像)的点之间位...

Bundle Adjustment 光束法平差详解

转自http://blog.csdn.net/junshen1314/article/details/48860951 首先引述来自维基百科的定义:假设我们有一个3D空间中的点,他被位于不同位置...

VR实现空间定位的7种利器(上)

按:本文作者王锐,VR行业资深从业者。 现有的VR体验馆的构建却还缺少了最重要的一环,就是廉价而灵活准确的定位方案。本文将据此阐述一些已有方案的优劣。本文分上下篇。 缺失的一环 虚拟现实刮起的风...

OpenMVG、OpenMVS配置及学习记录(Win10+VS2015)

更新于2017年5月10日。最近开始在做基于二维图像的三维重建项目,OpenMVG和OpenMVS可谓是必不可少的两个库,但网上配置及学习资料太少,花了整整一个月的时间才将库配置好,过程可谓艰难。本人...

Bundle adjustment-光束法平差介绍

Bundle adjustment-光束法平差介绍本文主要从摄影测量的角度来介绍光束法平差:目录Bundle adjustment-光束法平差介绍目录 关键词 解析空中三角测量 Markdown及扩展...

sparse bundle adjustment 摄影测量光束法平差程序库------编译

Sparse bundle adjustment(sba)即稀疏集束调整,现在广泛应用于计算机视觉领域,基本成为最后优化的标准算法,就是在已经得到的初始摄像机参数和三维点数据的基础针对投影误差进行优化...

Bundle Adjustment 光束法平差详解

首先引述来自维基百科的定义:假设我们有一个3D空间中的点,他被位于不同位置的多个摄像机看到,那么所谓的光束法平差(Bundle Adjustment),就是能够从这些多视角信息中提取出3D点的坐标以及...

Bundle Adjustment光束平差法概述

本文主要参考 http://blog.csdn.net/abcjennifer/article/details/7588865 http://blog.csdn.net/ximenchuixuez...

三维重建(三)相机参数标定与光束平差法(Bundle Adjustment)

一、针孔成像模型涉及到的坐标系由于相机的参数总数相对于某种光学模型而言的,这里用到的比较广泛的光学模型就是小孔成像的模型,下面针对小孔成像的光学模型涉及到的坐标系一一介绍。1、世界坐标系世界坐标系即为...

光束平差(Bundle Adjustment)算法

光束平差法(bundle adjustment ,BA)是一种优化问题算法,通过最小化观测图像和预测图像的对应点之间的位置投影误差而同时得到摄像机相关参数(摄像机参数矩阵、标定参数等)和空间结构的最优...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:bundle adjustment 光束平差法介绍及其应用
举报原因:
原因补充:

(最多只允许输入30个字)