关闭

字符串循环节

331人阅读 评论(0) 收藏 举报

字符串若存在循环节,则必有最小循环节,其余循环节均为最小循环节的倍数。


字符串看成一个映射i->s[i] 这样这个问题就类似于函数的周期性...

证明:
若X,Y是字符串的循环节则有 s[i]=s[i+x]=s[i+y]
x=gcd*p y=gcd*q
根据拓展欧几里德算法显然有 xm+yn=gcd(x,y)
pm+yn=1
于是s[i]=s[i+mx+ny]=s[i+gcd*(pm+yn)]=s[i+gcd]成立
若最小循环节为1 命题显然成立
若最小循环节不为1 若存在非整数倍的循环节X 那么X与最小循环节gcd=1与假设矛盾

故所有循环节长度都是最小循环节长度的整数倍


一个字符串A,若存在A=B+C,A=C+B。则该字符串有循环节


长度为N的字符串,可以根据最小循环节的长度来对其分类,可以分成M类,M为N的因子个数,最小循环节长度为N的因子,并且这M类两两不相交

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:46824次
    • 积分:1667
    • 等级:
    • 排名:千里之外
    • 原创:118篇
    • 转载:54篇
    • 译文:0篇
    • 评论:1条
    最新评论