莫比乌斯函数

转载 2015年11月21日 15:26:02


著作权归作者所有。
商业转载请联系作者获得授权,非商业转载请注明出处。
作者:Syu Gau
链接:http://www.zhihu.com/question/23764267/answer/26007647
来源:知乎

1,卷积:
f,g是两个数论函数(也就是说,以自然数集为定义域的复数值函数),则卷积运算f\ast g定义为
(f\ast g)(n) = \sum_{ij=n}{f(i)g(j)}
可以证明,卷积运算满足:
1)交换律:f\ast g=g\ast f
由定义显然。

2)结合律:(f\ast g)\ast h=f\ast(g\ast h)
考察两边作用在n上,左边是
\begin{align}((f\ast g)\ast h)(n) &= \sum_{lk=n}(f\ast g)(l)h(k) \\&= \sum_{lk=n}\left(\sum_{ij=l}f(i)g(j)\right)h(k)\\&= \sum_{ijk=n} f(i)g(j)h(k)\end{align}
右边是
\begin{align}(f\ast (g\ast h))(n) &= \sum_{il=n}f(i)(g\ast h)(l) \\&= \sum_{il=n}f(i)\left(\sum_{jk=l}g(j)h(k)\right)\\&= \sum_{ijk=n} f(i)g(j)h(k)\end{align}
故两边相等。

3)存在单位元\iota 使得\iota \ast f=f
我们需要
(\iota\ast f)(n)=\sum_{ij=n}\iota(i)f(j)=f(n)
故不难猜到\iota 应该定义为\iota(n)=\begin{cases}1&n=1\\0&n\neq1\end{cases}
事实上,直接验证可得
(\iota\ast f)(n)=\sum_{ij=n}\delta_{i,1}f(j)=f(n)

以上说明数论函数在卷积意义下构成一个交换群。


2,乘法单位元u
上面的\iota 是数论函数在卷积意义下的单位元,而普通乘法(fg)(n):=f(n)g(n)意义下的单位元显然是把所有自然数都映到1的函数,记作u


3,莫比乌斯函数\mu
u在卷积意义下的逆元,称为莫比乌斯函数。也就是说\mu 是满足
u\ast\mu=\iota
的唯一的数论函数。
把这个表达式写开就是
\sum_{d\mid n}\mu(d)=\iota(n)…………(*)

通常,莫比乌斯函数\mu定义为
\mu(1)=1
\mu(n)=(-1)^k,如果n能写成k个不同素数之积;
\mu(n)=0,其他情况。

按照这种定义不难证明(*)式。
对于n=1,(*)式成立;
对于n\neq1,用算术基本定理把n写成
n=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}
于是
\begin{align}\sum_{d\mid n}\mu(d) =& \mu(1)+\mu(p_1)+\mu(p_2)+\cdots+\mu(p_k)+\mu(p_1p_2)+\cdots+\mu(p_1p_2\cdots p_k) \\=& \binom{k}{0}+\binom{k}{1}(-1)+\binom{k}{2}(-1)^2+\cdots+\binom{k}{k}(-1)^k \\=&(1-1)^k=0\end{align}



现在来看看莫比乌斯反演说的是什么呢?
f(n)=\sum_{d\mid n}g(d)
当且仅当
g(n)=\sum_{d\mid n}\mu\left(\frac{d}{n}\right)f(d)
换而言之,
f = g\ast u\Leftrightarrow g = f\ast\mu

证明:
\begin{align}f=g\ast u \Rightarrow& f\ast \mu=(g\ast u)\ast \mu \\              \Rightarrow& f\ast\mu=g\ast(u\ast\mu) \\              \Rightarrow& f\ast\mu=g\ast\iota \\              \Rightarrow& f\ast\mu=g\end{align}
反之
\begin{align}g=f\ast\mu \Rightarrow& g\ast u=(f\ast\mu)\ast u \\                 \Rightarrow& g\ast u=f\ast(\mu\ast u) \\                 \Rightarrow& g\ast u=f\ast\iota \\                 \Rightarrow& g\ast u=f\end{align}



【51Nod1244】莫比乌斯函数之和-杜教筛+哈希表

【51Nod1244】莫比乌斯函数之和-杜教筛+哈希表
  • Maxwei_wzj
  • Maxwei_wzj
  • 2017年06月16日 14:33
  • 226

BZOJ 2440 - 容斥原理 + 莫比乌斯函数的应用

找规律题?(雾。。 题目要求的是第k个无平方因子数。。
  • yearwhk
  • yearwhk
  • 2015年12月16日 21:20
  • 793

O(n)求素数,求欧拉函数,求莫比乌斯函数,求对mod的逆元,各种求

筛素数void shai() { no[1]=true;no[0]=true; for(int i=2;i
  • liufengwei1
  • liufengwei1
  • 2015年07月08日 10:29
  • 1222

莫比乌斯函数ACM

莫比乌斯入门请耐心往下看: OK.现在可以开始刷题了。 莫比乌斯反演   HDU 1695 GCD 从区间[1, b]和[1,d]中分别选一个x, y,使得gc...
  • hnust_taoshiqian
  • hnust_taoshiqian
  • 2015年08月04日 21:25
  • 1712

莫比乌斯函数

在数论中的积性函数:对于正整数n的一个算术函数 f(n),若f(1)=1,且当a,b互质时f(ab)=f(a)f(b),在数论上就称它为积性函数。若对于某积性函数 f(n) ,就算a, b不互质,也有...
  • u010660276
  • u010660276
  • 2014年06月11日 17:35
  • 1960

线性筛与欧拉函数、莫比乌斯函数

网上关于素数筛的资料很多,这里只是给出弱鸟整理的几个线性筛和应用。最朴素的素数筛——埃拉托斯特尼筛法(Sieve of Eratosthenes) 复杂度 Olognlognint primes[M...
  • Joovo
  • Joovo
  • 2017年04月17日 01:52
  • 956

莫比乌斯函数详解

在讲这个函数之前。最好先了解欧拉函数。 我们用 \  记为整除。 记得小学的时候整除和整除以的概念么?别混淆。 2整除4 记作 2\4。 欧拉函数用来表示。 那么根据法里级数的展开(这个感觉和A...
  • qq_32126633
  • qq_32126633
  • 2017年07月28日 10:33
  • 374

莫比乌斯函数的证明

遗忘是可怕的东西……好记性不如烂笔头讲真……命题现在假设我不知道什么是莫比乌斯函数,只知道F(x)=∑d∣xf(d)F(x)=\sum_{d\mid x}f(d)若已知F(x)F(x),求f(x)f(...
  • Danliwoo
  • Danliwoo
  • 2016年07月09日 15:20
  • 1834

Hdu 5514 类莫比乌斯函数 容斥原理

题意:有m个石子围成一圈, 有n只青蛙从跳石子, 都从0号石子开始, 每次越过a[i]个石子 问所有被至少踩过的石子的序号之和思路: 设所有踩到的石头下标集合为 P,题目求sum(P),青蛙集合为...
  • Techmonster
  • Techmonster
  • 2016年09月29日 17:59
  • 950

莫比乌斯函数,数论中的战斗机

莫比乌斯函数,数论函数,由德国数学家和天文学家莫比乌斯(August Ferdinand Möbius ,1790–1868)提出。梅滕斯(Mertens)首先使用μ(n)作为莫比乌斯函数的...
  • ZSGG_ACM
  • ZSGG_ACM
  • 2014年11月03日 13:12
  • 4012
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:莫比乌斯函数
举报原因:
原因补充:

(最多只允许输入30个字)