莫比乌斯函数

转载 2015年11月21日 15:26:02
莫比乌斯反演


著作权归作者所有。
商业转载请联系作者获得授权,非商业转载请注明出处。
作者:Syu Gau
链接:http://www.zhihu.com/question/23764267/answer/26007647
来源:知乎

1,卷积:
f,g是两个数论函数(也就是说,以自然数集为定义域的复数值函数),则卷积运算f\ast g定义为
(f\ast g)(n) = \sum_{ij=n}{f(i)g(j)}
可以证明,卷积运算满足:
1)交换律:f\ast g=g\ast f
由定义显然。

2)结合律:(f\ast g)\ast h=f\ast(g\ast h)
考察两边作用在n上,左边是
\begin{align}((f\ast g)\ast h)(n) &= \sum_{lk=n}(f\ast g)(l)h(k) \\&= \sum_{lk=n}\left(\sum_{ij=l}f(i)g(j)\right)h(k)\\&= \sum_{ijk=n} f(i)g(j)h(k)\end{align}
右边是
\begin{align}(f\ast (g\ast h))(n) &= \sum_{il=n}f(i)(g\ast h)(l) \\&= \sum_{il=n}f(i)\left(\sum_{jk=l}g(j)h(k)\right)\\&= \sum_{ijk=n} f(i)g(j)h(k)\end{align}
故两边相等。

3)存在单位元\iota使得\iota \ast f=f
我们需要
(\iota\ast f)(n)=\sum_{ij=n}\iota(i)f(j)=f(n)
故不难猜到\iota应该定义为\iota(n)=\begin{cases}1&n=1\\0&n\neq1\end{cases}
事实上,直接验证可得
(\iota\ast f)(n)=\sum_{ij=n}\delta_{i,1}f(j)=f(n)

以上说明数论函数在卷积意义下构成一个交换群。


2,乘法单位元u
上面的\iota是数论函数在卷积意义下的单位元,而普通乘法(fg)(n):=f(n)g(n)意义下的单位元显然是把所有自然数都映到1的函数,记作u


3,莫比乌斯函数\mu
u在卷积意义下的逆元,称为莫比乌斯函数。也就是说\mu是满足
u\ast\mu=\iota
的唯一的数论函数。
把这个表达式写开就是
\sum_{d\mid n}\mu(d)=\iota(n)…………(*)

通常,莫比乌斯函数\mu定义为
\mu(1)=1
\mu(n)=(-1)^k,如果n能写成k个不同素数之积;
\mu(n)=0,其他情况。

按照这种定义不难证明(*)式。
对于n=1,(*)式成立;
对于n\neq1,用算术基本定理把n写成
n=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}
于是
\begin{align}\sum_{d\mid n}\mu(d) =& \mu(1)+\mu(p_1)+\mu(p_2)+\cdots+\mu(p_k)+\mu(p_1p_2)+\cdots+\mu(p_1p_2\cdots p_k) \\=& \binom{k}{0}+\binom{k}{1}(-1)+\binom{k}{2}(-1)^2+\cdots+\binom{k}{k}(-1)^k \\=&(1-1)^k=0\end{align}



现在来看看莫比乌斯反演说的是什么呢?
f(n)=\sum_{d\mid n}g(d)
当且仅当
g(n)=\sum_{d\mid n}\mu\left(\frac{d}{n}\right)f(d)
换而言之,
f = g\ast u\Leftrightarrow g = f\ast\mu

证明:
\begin{align}f=g\ast u \Rightarrow& f\ast \mu=(g\ast u)\ast \mu \\              \Rightarrow& f\ast\mu=g\ast(u\ast\mu) \\              \Rightarrow& f\ast\mu=g\ast\iota \\              \Rightarrow& f\ast\mu=g\end{align}
反之
\begin{align}g=f\ast\mu \Rightarrow& g\ast u=(f\ast\mu)\ast u \\                 \Rightarrow& g\ast u=f\ast(\mu\ast u) \\                 \Rightarrow& g\ast u=f\ast\iota \\                 \Rightarrow& g\ast u=f\end{align}



【莫比乌斯函数+除法分块】BZOJ2301(HAOI2011)[Problem b]题解

题目概述求 a≤x≤b,c≤y≤da\le x\le b,c\le y\le d 中 (x,y)=k(x,y)=k 的个数。解题报告好像很多人说是莫比乌斯反演……但是我感觉只用到了狄利克雷卷积和莫比乌...

BZOJ 2440: [中山市选2011]完全平方数(二分答案 + 莫比乌斯函数 + 容斥原理)

传送门 2440: [中山市选2011]完全平方数Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2693  Solved: 1307[Submit]...

【BZOJ2440】【中山市选2011】完全平方数 二分+容斥+莫比乌斯函数线性筛

题解: 给出PoPoQQQ大爷的题解链接: http://blog.csdn.net/popoqqq/article/details/42076037 我太弱,可以直接看大爷的不用看我的。 首...
  • Vmurder
  • Vmurder
  • 2015年03月26日 10:02
  • 847

[BZOJ 2440] 完全平方数【莫比乌斯函数/容斥原理/二分法】

[Description] 求第k个无平方因子数。无平方因子数指分解之后所有质因数的次数都为1的数。[Solution] 我们可以进行二分操作,查找区间[1,x]里有几个无平方因子数,逐渐缩小范围依...

积性函数、线性筛、莫比乌斯反演和一堆乱七八糟的题目

某菊苣的而总结,比较全面= =。 转自:http://jcvb.is-programmer.com/posts/41846.html ·积性函数 定义在正整数集上的函数(称为算术函数),若时有,则...

SPOJ-PGCD4491 莫比乌斯反演+积性函数+线性筛

0.0

BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)

BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)

莫比乌斯函数(bzoj 1101: [POI2007]Zap)

莫比乌斯反演: 转载自http://blog.csdn.net/acdreamers/article/details/8542292

BZOJ 2440 - 容斥原理 + 莫比乌斯函数的应用

找规律题?(雾。。 题目要求的是第k个无平方因子数。。
  • yearwhk
  • yearwhk
  • 2015年12月16日 21:20
  • 750

hdu6053 TrickGCD 莫比乌斯函数 容斥原理

题意:给你一个a数组,要求找出b数组。b数组满足:1
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:莫比乌斯函数
举报原因:
原因补充:

(最多只允许输入30个字)