关闭

线性筛素数法

219人阅读 评论(0) 收藏 举报
分类:

线性筛素数法代码:

#include<iostream>
using namespace std;    
const long N = 200000;   
long prime[N] = {0},num_prime = 0;    
int isNotPrime[N] = {1, 1};   
int main()    
{     
     	for(long i = 2 ; i < N ; i ++)       
       	{            
		if(! isNotPrime[i])               
	 		prime[num_prime ++]=i;  
		//关键处1        
		for(long j = 0 ; j < num_prime && i * prime[j] <  N ; j ++)
    		{               
		      	isNotPrime[i * prime[j]] = 1;  
	  		if( !(i % prime[j] ) )  //关键处2                  
				break;           
		}        
	}        
	return 0;   
}  

思想就是不断i乘上一个质数将其筛掉。


稍作修改,可以舍弃求模运算,并且可以只考虑奇数,并且可以同时求出质因子中的最小质数与最大质数。当然下面的maxprime数组对于求质数的过程没有用,可以删掉。

也可以在maxprime数组处稍作变动,同时求得一个数是不是唯一的质因子的幂次方。时间复杂度依然还是原先的O(n),并且没有求模运算。


const int MaxPrimeNum = 78499, MaxSize = 1001, MaxSize1 = 31251;
int MinPrime[MaxSize], MaxPrime[MaxSize];		//分别记录可以整除MaxSize的最小与最大prime的index      //MaxPrime可以改成bit类型数组来记录是否是prime或者是否是Prime幂次方
int prime[MaxPrimeNum];


//自己修改,欧拉筛法求n以内的所有素数,存在prime数组里,index从1到num_prime-1 。
//并同时求出n以内的所有数的最小质因子与最大质因子,分别存在MaxPrime数组与MinPrime数组里
//复杂度O(n)
void GetPrimeSolution::euler_sieve(int n)
{
	int i, j, len, num_prime = 1, tmpMaxIndex,    tmp;
	i = 2;
	prime[len = tmpMaxIndex = MaxPrime[i] = MinPrime[i] = num_prime++] = i;

	for (i = 3; i < n; i += 2)
	{
		if (!MinPrime[i])
		{
			prime[len = tmpMaxIndex = MaxPrime[i] = MinPrime[i] = num_prime++] = i;
		}
		else
		{
			tmpMaxIndex = MaxPrime[i];
			len = MinPrime[i];
		}     

		for (j = 2; j <= len && (tmp = i * prime[j]) < n; ++j)
		{
			MaxPrime[tmp] = tmpMaxIndex;
			MinPrime[tmp] = j;
		}
	}

/*	for (i = 0; i < num_prime; ++i)
	{
		printf("%d\t", prime[i]);
	}

	for (i = 0; i < n; ++i)
	{
		//printf("%d\t%d\t%d\n", i, MinPrime[i], MaxPrime[i]);
		printf("%d\t%d\t%d\n", i, prime[MinPrime[i]], prime[MaxPrime[i]]);
	}*/
}



const int MaxPrimeNum = 78499, MaxSize = 1001;
int MinPrime[MaxSize], MaxPrime[MaxSize];		//分别记录可以整除MaxSize的最小与最大prime的index      //MaxPrime可以改成bit类型数组来记录是否是prime或者是否是Prime幂次方
int prime[MaxPrimeNum];


//自己修改,欧拉筛法求n以内的所有素数,存在prime数组里,index从1到num_prime-1 。
//并同时求出n以内的所有数的最小质因子与最大质因子,分别存在MaxPrime数组与MinPrime数组里
//复杂度O(n)
void euler_sieve(int n)
{
	int i, j, len, num_prime = 1, tmp;
	i = 2;
	prime[len = MinPrime[i] = num_prime++] = i;

	for (i = 3; i < n; i += 2)
	{
		if (!MinPrime[i])
		{
			prime[len = MinPrime[i] = num_prime++] = i;
		}
		else
		{
			len = MinPrime[i];
		}

		for (j = 2; j <= len && (tmp = i * prime[j]) < n; ++j)
		{
			MinPrime[tmp] = j;
		}
	}

	for (i = 0; i < num_prime; ++i)
	{
	printf("%d\t", prime[i]);
	}
/*
	for (i = 0; i < n; ++i)
	{
	//printf("%d\t%d\t%d\n", i, MinPrime[i], MaxPrime[i]);
	printf("%d\t%d\t%d\n", i, prime[MinPrime[i]], prime[MaxPrime[i]]);
	}*/
}

int main()
{
	euler_sieve(100);
	return 0;
}
















0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:46805次
    • 积分:1666
    • 等级:
    • 排名:千里之外
    • 原创:118篇
    • 转载:54篇
    • 译文:0篇
    • 评论:1条
    最新评论