主成分分析与因子分析不同点

转载 2011年01月13日 14:35:00

   筛选、综合以及优化统计指标体系的多元统计方法有两种:

   一种方法是在原始指标体系内按每个指标对研究对象独立作用的大小(或者叫方差贡献的大小),通过进行统计检验和数学交换,筛选掉作用小的不重要指标,保留作用大的重要指标,最后形成由原始指标体系中的部分重要指标组成的优化的指标体系,这类方法常用的有多元回归方法、逐步回归方法等。

    另外一种方法是属于通过简化数据结构达到降低维数的方法,这类方法的实质是把多个存在相关关系的指标化成少数几个互不相关的新的综合性指标。或者对原众多指标,按照一定”原则“寻求原始指标的某种线性组合而形成新的综合指标(主成分变量);或者把原始指标试图分解为公因子和特殊因子的线性组合(有时可忽略特殊因子)。这些新产生的主成分和公因子最大程度上反映了原始指标的信息(涵盖量达到90%以上),之间胡不相关,去除了重叠信息,个数又较少,而且层次较高,综合性较强,使形成的新指标体系达到最优。这类方法主要包括主成分分析法和因子分析法。

 

    在综合评价中,优化指标体系多用第二类方法,即主成分分析法和因子分析法。这两种方法既有联系又有区别。应用范围也不尽相同。

    首先,两者简化数据结构的机理不同,主成分分析法是对具有复杂相关关系的原始指标,寻找投影向量a,即对原始指标X进行线性变换而生成新的线性组合变量Y=aX.````于是原始评价指标x1 x2···(P个)简化并优化为综合性指标Y1,Y2```(m个) p>m

    因子分析法与主成分分析法不同,其实质不是对数据进行数学变换,而是对于具有复杂相关关系的原始指标x1 x2···(P个),通过寻找原始变量的共同方面来简化存在于原始变量之间的复杂关系,把各个测量本质相同的变量归入一个因子(公因子),这些公因子对原始变量起着重要的支配作用,公因子之间不相关,往往不可测,个数比原始变量个数少比如m个,是所有变量的共同具有的公共因素。即把原始评价指标化为m个公因子(综合指标),形成优化的指标体系。

    另外,用主成分分析方法优化后的综合性指标Y1,Y2```(m个)仍然是可测性指标并具有实在的意义;而用因子分析方法得到的综合性指标F1,F2,···(m个)是不可测的,是潜在的、抽象的。这是这两种方法最实质性的区别,但往往容易被忽视。经验总结认为,在经济领域,如果综合评价所基于的是反映客观社会经济现象数量特征的客观性指标体系,一般用主成分分析方法,如果综合评价指标基于的指标体系是反映人们的心理感受,主观愿望,满意程度等方面的主观性指标形成的指标体系,则用因子分析方法。

主成分分析与因子分析之比较及实证分析

一、问题的提出  在科学研究或日常生活中,常常需要判断某一事物在同类事物中的好坏、优劣程度及其发展规律等问题。而影响事物的特征及其发展规律的因素(指标)是多方面的,因此,在对该事物进行研究时,为了能更...
  • ysuncn
  • ysuncn
  • 2007年12月08日 14:19
  • 55406

主成分分析、因子分析和聚类分析的区别

主成分分析就是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。 综合指标即为主成分。所得出的少数几个主成分,要尽可能多地保留原始变量的信息,且彼此不...
  • zhaozhn5
  • zhaozhn5
  • 2017年09月24日 13:08
  • 196

主成分分析与因子分析不同点

筛选、综合以及优化统计指标体系的多元统计方法有两种:一种方法是在原始指标体系内按每个指标对研究对象独立作用的大小(或者叫方差贡献的大小),通过进行统计检验和数学交换,筛选掉作用小的不重要指标,保留作用...
  • liuy_yy
  • liuy_yy
  • 2011年01月13日 14:35
  • 6186

主成分分析和因子分析及其在R中的…

1  主成分分析和因子分析比较 主成分分析和探索性因子分析是两种用来探索和简化多变量复杂关系的常用方法,它们之间有联系也有区别。 主成分分析(PCA)是一种数据降维方法,它能将大量相关变量转化为一...
  • troubleisafriend
  • troubleisafriend
  • 2015年08月26日 19:02
  • 1970

主成分分析、聚类分析、因子分析的基本思想及优缺点

http://blog.sina.com.cn/s/blog_67fcf49e0101g1lt.html
  • proware
  • proware
  • 2017年06月25日 22:28
  • 534

主成分分析、因子分析、聚类的概览与比较

主成分分析、因子分析、聚类的概览与比较 主成分分析:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个综合指标(主成分),用综合指标来解释多变量的方差——协方差结构,即每个主成分...
  • tiandijun
  • tiandijun
  • 2014年05月06日 21:28
  • 1713

主成分分析和因子分析十大不同点

主成分分析和因子分析无论从算法上还是应用上都有着比较相似之处,本文结合以往资料以及自己的理解总结了以下十大不同之处,适合初学者学习之用。 1.原理不同 主成分分析基本原理:利用...
  • zhuanzhu123
  • zhuanzhu123
  • 2013年11月29日 20:31
  • 1263

因子分析、主成分分析(PCA)、独立成分分析(ICA)——斯坦福CS229机器学习个人总结(六)

因子分析是一种数据简化技术,是一种数据的降维方法。 因子分子可以从原始高维数据中,挖掘出仍然能表现众多原始变量主要信息的低维数据。此低维数据可以通过高斯分布、线性变换、误差扰动生成原始数据。 因子...
  • sinat_37965706
  • sinat_37965706
  • 2017年05月07日 15:44
  • 1512

主成分分析和因子分析的区别

两者既有区别,又有联系 降维与分类是多元统计分析的两个主题,在这里,我浅谈一下的主成分和因子分析主要用于降维。 主成分分析就是将多项指标转化为少数几项综合指标,用综合指标来解释多变量的方差...
  • zhanglq2014
  • zhanglq2014
  • 2015年07月19日 22:27
  • 2454

PCA(主成分分析)与FA(因子分析)的直白理解

主成分分析和因子分析是数据挖掘中常用的方法,帮助我们对原始数据有更好的理解,同时也可以实现降维等操作,为后续工作提供便利。   但是有一些博客的介绍中,其中数学推导的部分过多,没有很好地跟实际例子结...
  • yujianmin1990
  • yujianmin1990
  • 2015年10月19日 10:55
  • 4503
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:主成分分析与因子分析不同点
举报原因:
原因补充:

(最多只允许输入30个字)