关闭

体育参数检验方法之一 T检验

标签: 体育测试
1199人阅读 评论(1) 收藏 举报

T检验

 

  均数的假设检验方法有多种,如u检验,t检验等。u检验适合于总体为正态分布且 为已知的情况或者总体分布未知,但需要样本含量较大的情况。而在体育实践中,我们碰到的问题大多是样本含量不大(n<30)的情况,这时就需要采用t检验的方法。t检验对样本含量的大小并无特别要求。因此,t检验在体育实践中的应用尤为广泛。主要有单样本t检验、独立样本t检验和配对样本t检验三种类型。

 

  3种t检验的基本思路一致:先作无效假设H0,即无差异假设,如果结果是p《a,则拒绝H0,认为差异具有显著性。反之则不具有显著性。其理论基础就是小概率原理。

 

  单样本t检验案例

  例 随机检测长跑组10名男子长跑运动员的脉搏(次/分)如下:55、61、58、56、65、53、59、62、54、57。已知普通成年男子的脉搏均数为72次/分,问男子长跑组的脉搏与普通成年男子的脉搏有无差异?


独立样本t检验案例

例 从某体育学院A、B两个班级分别随机抽测了8至9名男生进行跳高测试,成绩如下表所示:

 

试问:A、B两个班级男生的跳高成绩有无显著性差异?

 

配对样本t检验案例

例 对10名学生进行了为期3个月的发展下肢爆发力的训练,在训练前后分别测试了每一人的立定跳远成绩,如下表所示,试问所采用的发展下肢爆发力的训练方法是否有效?

 

 

0
0

猜你在找
【直播】机器学习&数据挖掘7周实训--韦玮
【套餐】系统集成项目管理工程师顺利通关--徐朋
【直播】3小时掌握Docker最佳实战-徐西宁
【套餐】机器学习系列套餐(算法+实战)--唐宇迪
【直播】计算机视觉原理及实战--屈教授
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之矩阵--黄博士
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之凸优化--马博士
【套餐】Javascript 设计模式实战--曾亮
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:206008次
    • 积分:3081
    • 等级:
    • 排名:第11177名
    • 原创:106篇
    • 转载:23篇
    • 译文:1篇
    • 评论:24条
    最新评论