关闭

大数加法运算算法

171人阅读 评论(0) 收藏 举报
分类:

1.大数存储的实现:作为实现大数存储最常见的一类方法是利用数组。将一个有 n 位的大数存入数组 ,每个数组的一个元素表示一位十进制数。

2.大数加法运算

看下面一个例子:

 122345678902345 + 34567890012=122380246792357 

在上面的加法运算中 ,并没有考虑参与运算的数的位数 , 即使有小数也是一样。每次运算时只是利用加法运算的规则 对参与运算的每一位进行运算 ,每次运算都是在 10 以内进 行 ,并加上了前面的进位。通过这种运算就可以非常准确的 得到运算结果 ,并且可以不考虑位数和精度的问题。 考虑到计算机的存储问题 ,如果我们采用数组来存储参 与运算的每个加数 ,则需要将上面参与运算的数看成字符 ,并 将原来的数翻转 ,即采用下面的运算方法: 

543209876543221 + 21009876543=753297642083221 

我们看到运算结果与实际结果相反 ,因此只需要将结果 再翻转一次输出即可得到正确结果。这样做的好处在于一旦 遇到低位向高位进位时 ,不会出现存储上的问题。因为最高 位存储在数组的最后一个元素 ,其后的存储单元可用于存放 进位 ,同时运算是从数组的第一个元素开始的。

具体算法如下:

定义两个字符数组s1[N],s2[N]

定义两个整形数组a[N]={0}和b[N]={0}

通过键盘对s1,s2赋值

strlen函数求出s1,s2长度len1,len2

通过循环将字符串s1中的数值字符从后依次向前转换为数字并赋于整形数组a,其代码如下:

c=0;
for(i=len1-1;i>=0;i--)
  a[c++]=s1[i]-'0';
同理将字符串s2转化为整形数组b

采用循环实现加法运算,其代码如下:

<pre name="code" class="cpp">

for(i=0;i<N;i++)
   {
     a[i]+=b[i];
     if(a[i]>=10)
     {
	a[i]-=10;
	a[i+1]++;
      }
<span style="font-family:Arial, Helvetica, sans-serif;"></span><pre name="code" class="cpp">   }





输出结果,代码如下:

for(i=N-1;i>=0;i--)
  if(a[i])
   break;
for(j=i;j>=0;j--)
  printf("%d",a[j]);
printf("\n");

以上就是大数加法运算的算法。


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:1360次
    • 积分:91
    • 等级:
    • 排名:千里之外
    • 原创:8篇
    • 转载:1篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档