K-近邻法(K-NN)

原创 2016年06月01日 12:53:35

K-近邻算法的基本思路

  1. 已知NX
  2. 输入未知类别的样本x
  3. 计算xxiX,(i=1,2N)di(x)
  4. 找到xkxk=xi,i=1,2k
  5. xk
  6. 最终判断未知样本属于那一类x

Matlab代码实现

clear all;
close all;
clc;

%X为标记好的样本集,样本为将1至40的数分为2类
%1-20里的10个随机数为一类,21-40里的10个随机数为一类
X = [8,9,17,14,18,12,2,10,16,20,24,34,25,40,31,38,22,21,27,26];
[r,c] = size(X);
%标记好的两类
w1 = [8,9,17,14,18,12,2,10,16,20];
w2 = [24,34,25,40,31,38,22,21,27,26];

%x为要被分类的样本
T = 1:40;%选取类的范围里的随机序列,共40个数
R = randperm(40);%将1至40随机数打乱
x = T(R(1));
disp('随机数x为:');
disp(num2str(x));

%k为邻居数目(k-个近邻)
k = 7;

%计算距离
d = zeros(r,c);
for i = 1:c
    d(i) = abs(X(i)-x);
end

%找出k个最小距离
xk = zeros(1,k);%存储最近邻元
for i = 1:k
    [di ,n] = min(d);%找到最短距离di,以及算在的位置
    xk(i) = X(n);
    d(n) = 40;%为了获得其他的最小值将查询到的最小值赋值为最大值
end

%判断属于的类别
k1 = 0;%属于w1的样本个数
for i = 1:k
    for j = 1:10
        if xk(i) == w1(j)
            k1 = k1+1;
        end
    end
end
k2 = k - k1;%%属于w2的样本个数
if  k2<k1
    disp( '随机数x属于w1类:');
    disp( num2str(w1));
    break;
else
    disp( '随机数x属于w2类:');
    disp( num2str(w2));
    break;
end

结果图

版权声明:本文为博主原创文章,未经博主允许不得转载。如有疑问,欢迎打扰。

相关文章推荐

k近邻法(K-NN)

K近邻法(k-NN)是一种基本的分类和回归方法。

K近邻法(k-NN)

K近邻法(k-NN)

k最近邻(k-nn)

简短清晰的介绍k最近邻

k-近邻算法(k-NN)及其Python实现

k-近邻算法(k-NN)及其Python实现 算法思想:   给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(K个邻居), 这K个实例的多数属于某个类,就把该输入实例...

MachineLearning— (KNN)k Nearest Neighbor之最近邻法原理举例理解(一)

K最近邻,K近邻法(k-nearest neighbor)是机器学习当中较为简单理解的一种基本分类与回归方法,KNN输入的是实例的特征向量,也就是特征空间上的点;输出的是其对应的类别标签,KNN的训练...

k-近邻法

k-近邻法概述工作原理:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输人没有标签的新数据后,将新数据的每个特征与样本集中数据...

K近邻法(knn)与k-means(附源代码)

简介 K近邻法(knn)是一种基本的分类与回归方法。k-means是一种简单而有效的聚类方法。虽然两者用途不同、解决的问题不同,但是在算法上有很多相似性,于是将二者放在一起,这样能够更好地对比二...

模式识别中K-近邻法的Matlab代码

function K_Nearest_Neighbor_Classification %偶4年前的《模式识别》作业:2008年4月24日 %采用K-近邻法,距离为欧氏距离 %算法视线见《模式...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)