关闭

K-近邻法(K-NN)

标签: 算法K-近邻matlab模式识别
357人阅读 评论(0) 收藏 举报
分类:

K-近邻算法的基本思路

  1. 已知NX
  2. 输入未知类别的样本x
  3. 计算xxiX,(i=1,2N)di(x)
  4. 找到xkxk=xi,i=1,2k
  5. xk
  6. 最终判断未知样本属于那一类x

Matlab代码实现

clear all;
close all;
clc;

%X为标记好的样本集,样本为将1至40的数分为2类
%1-20里的10个随机数为一类,21-40里的10个随机数为一类
X = [8,9,17,14,18,12,2,10,16,20,24,34,25,40,31,38,22,21,27,26];
[r,c] = size(X);
%标记好的两类
w1 = [8,9,17,14,18,12,2,10,16,20];
w2 = [24,34,25,40,31,38,22,21,27,26];

%x为要被分类的样本
T = 1:40;%选取类的范围里的随机序列,共40个数
R = randperm(40);%将1至40随机数打乱
x = T(R(1));
disp('随机数x为:');
disp(num2str(x));

%k为邻居数目(k-个近邻)
k = 7;

%计算距离
d = zeros(r,c);
for i = 1:c
    d(i) = abs(X(i)-x);
end

%找出k个最小距离
xk = zeros(1,k);%存储最近邻元
for i = 1:k
    [di ,n] = min(d);%找到最短距离di,以及算在的位置
    xk(i) = X(n);
    d(n) = 40;%为了获得其他的最小值将查询到的最小值赋值为最大值
end

%判断属于的类别
k1 = 0;%属于w1的样本个数
for i = 1:k
    for j = 1:10
        if xk(i) == w1(j)
            k1 = k1+1;
        end
    end
end
k2 = k - k1;%%属于w2的样本个数
if  k2<k1
    disp( '随机数x属于w1类:');
    disp( num2str(w1));
    break;
else
    disp( '随机数x属于w2类:');
    disp( num2str(w2));
    break;
end

结果图

6
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:9772次
    • 积分:240
    • 等级:
    • 排名:千里之外
    • 原创:11篇
    • 转载:1篇
    • 译文:0篇
    • 评论:2条
    最新评论