关闭

周志华 《机器学习》之 第十二章(计算学习理论)概念总结

标签: 机器学习算法设计
386人阅读 评论(0) 收藏 举报
分类:

看到12章,题目叫计算学习理论,当时一萌,这是干什么用的呢?前面的章节中基本都是讲述了一些机器学习的一些常用方法。看到这个标题我的第一反应应该是理论方面的研究,那是否对计算与学习这两方面的理论研究呢?既然是理论的东西,我想对于一般应用机器学习算法的来说,可能意义不大吧!但是我个人认为有可能也可以指导我们进行算法设计。周老师数据对计算学习理论这么描述的,(是关于机器学习的理论基础,其目的是分析学习任务的困难本质,为学习算法提供理论保证,并根据分析结果指导算法设计)

1、基础知识

独立同分布样本:
泛化误差:
h 为从XY的一个映射,其泛化误差为

E(h;D)=PxD(h(x)y)

hD上的经验误差为
E^(h;D)=1mi=1m(h(xiyi))

如果DD的独立同分布采样,因此h的经验误差的期望等于其泛化误差。
因此本章就主要研究经验误差与泛化误差之间的逼近程度。

2、PAC学习

概率近似正确(PCA)

3、有限假设空间

4、VC维

5、Rademacher复杂度

6、稳定性

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:136955次
    • 积分:2093
    • 等级:
    • 排名:第19299名
    • 原创:66篇
    • 转载:44篇
    • 译文:1篇
    • 评论:10条
    最新评论