周志华 《机器学习》之 第十三章(半监督学习)概念总结

原创 2016年08月30日 11:08:30

在前面章节中接触到的大部分都是监督学习方法以及无监督学习方法(聚类),这章讲述的半监督学习,我个人理解,应该是存在一部分标记样本,但是又不足以训练出一个良好性能的学习器,因此采用将其它未标记样本加入其中进行训练,这样的学习称为半监督学习。
对半监督的理解可参阅http://blog.csdn.net/yhdzw/article/details/22733371

1、未标记样本

让学习器不依赖外界交互、自动地利用未标记样本来提升学习性能,就是半监督学习。
纯半监督学习
直推学习

2、生成式方法

生成式方法是直接基于生成式模型的方法。此类方法假设所有数据(无论是否有标记)都是由同一个潜在的模型“生成”的。这个假设使得我们能通过潜在模型的参数将未标记数据与学习目标联系起来,而未标记数据的标记则可看作模型的缺失参数,通常可以基于EM算法进行极大似然估计求解。此类方法的区别主要在于生成式模型的假设,不同的模型假设将产生不同的方法。

3、半监督SVM

4、图半监督学习

给定一个数据集,我们可以将数据集映射为一个图,数据集中每个样本对应于图中一个结点,若两个样本之间的相似度很高(或相关性很强),则对应的结点之间存在一条边,边的强度正比于样本之间的相似度(或相关性)。我们可以将有标记样本所对应的结点想象为染过色,而未标记样本所对应的结点尚未染色。于是,半监督学习就对应于“颜色”在图上的扩散或传播的过程。由于一个图对应了一个矩阵,这就使得我们能基于矩阵运算来进行半监督学习算法的推导与分析。

5、基于分歧的方法

6、半监督聚类

半监督学习

半监督的关键问题是解决监督学习中未标记数据的使用问题和无监督学习中带标记数据的使用问题...
  • xholes
  • xholes
  • 2017年10月03日 19:32
  • 341

手把手教你用GAN实现半监督学习

引言本文主要介绍如何在tensorflow上仅使用200个带标签的mnist图像,实现在一万张测试图片上99%的测试精度,原理在于使用GAN做半监督学习。...
  • qq_25737169
  • qq_25737169
  • 2017年11月14日 17:48
  • 1070

周志华机器学习读后总结 第12、13章

计算学习理论 什么是计算学习理论 计算学习理论是关于机器学习的理论基础,其目的是分析学习任务的困难本质,为学习算法提供理论保证,并根据分析结果指导算法设计。泛化误差和经验误差是计算学习理论的两个重要概...
  • baidu_32142047
  • baidu_32142047
  • 2017年10月23日 17:56
  • 127

机器学习(周志华) 参考答案 第十三章 半监督学习 13.10

机器学习(周志华) 参考答案 第十三章 半监督学习 13.10
  • icefire_tyh
  • icefire_tyh
  • 2016年08月28日 13:55
  • 1168

机器学习(周志华) 参考答案 第十三章 半监督学习 13.4

机器学习(周志华) 参考答案 第十三章 半监督学习 13.4
  • icefire_tyh
  • icefire_tyh
  • 2016年08月28日 13:55
  • 1477

周志华《Machine Learning》学习笔记(15)--半监督学习

上篇主要介绍了机器学习的理论基础,首先介绍了PAC可学习的基本概念,对于有限假设空间:可分情形时,假设空间都是PAC可学习的;不可分情形时,假设空间都是不可知PAC可学习的。对于无限假设空间,通过VC...
  • u011826404
  • u011826404
  • 2017年07月04日 22:16
  • 1353

机器学习(周志华) 参考答案 第十三章 半监督学习

机器学习(周志华) 参考答案 第十三章 半监督学习
  • icefire_tyh
  • icefire_tyh
  • 2016年08月28日 13:56
  • 2835

过拟合及其解决方法

过拟合是在训练数据上拟合效果好,但在测试数据上效果比较差。我们通过偏频派与贝叶斯派分别解析为什么加入正则化项能避免过拟合现象。...
  • lin360580306
  • lin360580306
  • 2016年04月24日 15:08
  • 10768

【machine learning】regularization

机器学习范式,正则化
  • gugugujiawei
  • gugugujiawei
  • 2015年01月21日 14:57
  • 922

周志华 《机器学习》之 第五章(神经网络)概念总结

记得在读研期间认真学习过神经网络这门课程,当时老师讲得也挺细的,自己当时觉得理论也学得还不错,在结课的时候记得用BP神经网络C++实现过一个简单的验证码识别程序,所以对BP神经网络理解还是有一定记忆的...
  • lixianjun913
  • lixianjun913
  • 2016年08月16日 11:05
  • 875
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:周志华 《机器学习》之 第十三章(半监督学习)概念总结
举报原因:
原因补充:

(最多只允许输入30个字)