周志华 《机器学习》之 第十三章(半监督学习)概念总结

原创 2016年08月30日 11:08:30

在前面章节中接触到的大部分都是监督学习方法以及无监督学习方法(聚类),这章讲述的半监督学习,我个人理解,应该是存在一部分标记样本,但是又不足以训练出一个良好性能的学习器,因此采用将其它未标记样本加入其中进行训练,这样的学习称为半监督学习。
对半监督的理解可参阅http://blog.csdn.net/yhdzw/article/details/22733371

1、未标记样本

让学习器不依赖外界交互、自动地利用未标记样本来提升学习性能,就是半监督学习。
纯半监督学习
直推学习

2、生成式方法

生成式方法是直接基于生成式模型的方法。此类方法假设所有数据(无论是否有标记)都是由同一个潜在的模型“生成”的。这个假设使得我们能通过潜在模型的参数将未标记数据与学习目标联系起来,而未标记数据的标记则可看作模型的缺失参数,通常可以基于EM算法进行极大似然估计求解。此类方法的区别主要在于生成式模型的假设,不同的模型假设将产生不同的方法。

3、半监督SVM

4、图半监督学习

给定一个数据集,我们可以将数据集映射为一个图,数据集中每个样本对应于图中一个结点,若两个样本之间的相似度很高(或相关性很强),则对应的结点之间存在一条边,边的强度正比于样本之间的相似度(或相关性)。我们可以将有标记样本所对应的结点想象为染过色,而未标记样本所对应的结点尚未染色。于是,半监督学习就对应于“颜色”在图上的扩散或传播的过程。由于一个图对应了一个矩阵,这就使得我们能基于矩阵运算来进行半监督学习算法的推导与分析。

5、基于分歧的方法

6、半监督聚类

机器学习(周志华) 参考答案 第十三章 半监督学习

机器学习(周志华) 参考答案 第十三章 半监督学习

周志华《Machine Learning》学习笔记(15)--半监督学习

上篇主要介绍了机器学习的理论基础,首先介绍了PAC可学习的基本概念,对于有限假设空间:可分情形时,假设空间都是PAC可学习的;不可分情形时,假设空间都是不可知PAC可学习的。对于无限假设空间,通过VC...

机器学习(周志华) 参考答案 第十三章 半监督学习 13.10

机器学习(周志华) 参考答案 第十三章 半监督学习 13.10

sklearn中的交叉验证和数据划分

给定一个训练数据集合,寻找一个模型去fit这个训练数据,如果在全部的训练数据上训练获得模型并且在全部的训练数据上测试模型,则测试结果会很好; 但是对于未知的数据泛化效果会很不好,即过拟合。所以需要在...
  • dinkwad
  • dinkwad
  • 2017年11月27日 16:38
  • 42

机器学习(周志华) 参考答案 第十三章 半监督学习

机器学习(周志华) 参考答案 第十三章 半监督学习

机器学习(周志华) 参考答案 第十三章 半监督学习 13.4

机器学习(周志华) 参考答案 第十三章 半监督学习 13.4

周志华《Machine Learning》学习笔记(15)--半监督学习

转自:http://blog.csdn.net/u011826404/article/details/74358913 上篇主要介绍了机器学习的理论基础,首先从独立同分布引入泛化误差...
  • hhsh49
  • hhsh49
  • 2017年11月13日 15:35
  • 23

机器学习笔记(十三)半监督学习

13.半监督学习 这章介绍半监督学习方法。 13.1未标记样本 先说两个概念: 1)有标记样本(Labeled) 训练样本集Dl={(x1,y1), (x2,y2),…, (xl,yl)},...

【机器学习 基本概念】监督学习、无监督学习、半监督学习与强化学习

简单介绍监督学习、无监督学习、半监督学习与强化学习。

机器学习中的标签数据和无标签数据(监督、非监督和半监督学习)

原文链接http://www.shujuren.org/article/62.html 原文如下监督式和非监督式机器学习算法作者 Frankchen 什么是监督式机器学习,它与和非监督式机器学习有什...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:周志华 《机器学习》之 第十三章(半监督学习)概念总结
举报原因:
原因补充:

(最多只允许输入30个字)