Joseph 线性方法!

转载 2007年09月19日 08:51:00

问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号

我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开
始):
  k  k+1  k+2  ... n-2, n-1, 0, 1, 2, ... k-2
并且从k开始报0。

现在我们把他们的编号做一下转换:
k     --> 0
k+1   --> 1
k+2   --> 2
...
...
k-2   --> n-2
k-1   --> n-1

变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根
据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x'
=(x+k)%n

如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)的
情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写递推公式:

令f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]

递推公式
f[1]=0;
f[i]=(f[i-1]+m)%i;  (i>1)

有了这个公式,我们要做的就是从1-n顺序算出f[i]的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,
我们输出f[n]+1

由于是逐级递推,不需要保存每个f[i],程序也是异常简单:

#include <stdio.h>

main()
{
  int n, m, i, s=0;
  printf ("N M = "); scanf("%d%d", &n, &m);
  for (i=2; i<=n; i++) s=(s+m)%i;
  printf ("The winner is %d/n", s+1);
}

这个算法的时间复杂度为O(n),相对于模拟算法已经有了很大的提高。算n,m等于一百万,一千万的情况不是问题
了。
 

相关文章推荐

线性几何方法表面重建

  • 2014年11月09日 15:27
  • 376KB
  • 下载

html5 canvas 绘制矩形, 方法,线性渐变,径向渐变,透明等

canvas  绘制矩形, 方法,线性渐变,径向渐变,透明 1.    HTML5 canvas属性 1.1.     canvas画图 标签定义图形,比如图表和其他图像,您必须使用脚本来绘制...

多重共线性问题的几种解决方法

在多元线性回归模型经典假设中,其重要假定之一是回归模型的解释变量之间不存在线性关系,也就是说,解释变量X1,X2,……,Xk中的任何一个都不能是其他解释变量的线性组合。如果违背这一假定,即线性回归模型...

线性表的基本操作:插入、删除、查找等操作在顺序存储结构和链接存储结构上的算法及其实现方法。 2006-05-05 10:32:58

线性表的基本操作:插入、删除、查找等操作在顺序存储结构和链接存储结构上的算法及其实现方法。 2006-05-05 10:32:58 分类: 项目管理   ...
  • zxl2016
  • zxl2016
  • 2016年07月28日 09:07
  • 414
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Joseph 线性方法!
举报原因:
原因补充:

(最多只允许输入30个字)