数组和广义表的基本运算实现

原创 2016年05月30日 13:04:08

一、实验题目

假设nn的稀疏矩阵A采用三元组表示,设计一个程序exp6-4.cpp实现如下功能:

(1)生成如下两个稀疏矩阵的三元组a和b;

       

(2)输出a转置矩阵的三元组;

(3)输出a+b的三元组;

(4)输出ab的三元组。

二、实验目的

掌握稀疏矩阵的存储结构以及基本运算实现算法。

三、实验要求

针对程序exp6-4.cpp,输出结果如下:

 

 

#include <iostream>
#include <stdio.h>
#define M 4
#define N 4
#define Maxsize 100
using namespace std;
typedef struct
{
    int r;
    int c;
    int d;
}TupNode;
typedef struct
{
    int rows;
    int cols;
    int nums;
    TupNode data[Maxsize];
}TSMatrix;
void CreatMat(TSMatrix &t,int A[M][N])
{
    int i,j;
    t.rows=M;
    t.cols=N;
    t.nums=0;
    for(i=0;i<M;i++)
    {
        for(j=0;j<N;j++)
        {
            if(A[i][j]!=0)
            {
                t.data[t.nums].r=i;t.data[t.nums].c=j;
                t.data[t.nums].d=A[i][j];t.nums++;
            }
        }
    }
}
void DispMat(TSMatrix t)
{
    int i;
    if(t.nums<=0)
        return;
    printf("\t%d\t%d\t%d\n",t.rows,t.cols,t.nums);
    printf("\t--------------------\n");
    for(i=0;i<t.nums;i++)
            printf("\t%d\t%d\t%d\n",t.data[i].r,t.data[i].c,t.data[i].d);
}
void TranTat(TSMatrix t,TSMatrix &tb)
{
    int p,q=0,v;
    tb.rows=t.cols;tb.cols=t.rows;tb.nums=t.nums;
    if(t.nums!=0)
    {
        for(v=0;v<t.cols;v++)
        {
            for(p=0;p<t.nums;p++)
            {
                if(t.data[p].c==v)
                {
                    tb.data[q].r=t.data[p].c;
                    tb.data[q].c=t.data[p].r;
                    tb.data[q].d=t.data[p].d;
                    q++;
                }
            }
        }
    }
}
bool MatAdd(TSMatrix a,TSMatrix b,TSMatrix &c)
{
    int i=0,j=0,k=0;
    int v;
    if(a.rows!=b.rows||a.cols!=b.cols)
    {
        return false;
    }
    c.rows=a.rows;c.cols=a.cols;
    while(i<a.nums&&j<b.nums)
    {
        if(a.data[i].r==b.data[j].r)
        {
            if(a.data[i].c<b.data[j].c)
            {
                c.data[k].r=a.data[i].r;
                c.data[k].c=a.data[i].c;
                c.data[k].d=a.data[i].d;
                k++;i++;
            }
            else if(a.data[i].c>b.data[j].c)
            {
                c.data[k].r=a.data[j].r;
                c.data[k].c=a.data[j].c;
                c.data[k].d=a.data[j].d;
                k++;j++;
            }
            else
            {
                v=a.data[i].d+b.data[j].d;
                if(v!=0)
                {
                    c.data[k].r=a.data[i].r;
                    c.data[k].c=a.data[i].c;
                    c.data[k].d=v;
                    k++;
                }
                i++;j++;
            }

        }
        else if(a.data[i].r<b.data[j].r)
        {
            c.data[k].r=a.data[i].r;
            c.data[k].c=a.data[i].c;
            c.data[k].d=a.data[i].d;
            k++;i++;
        }
        else
        {
             c.data[k].r=b.data[j].r;
             c.data[k].c=b.data[j].c;
             c.data[k].d=b.data[j].d;
             k++;j++;
        }
        c.nums=k;
    }
    return true;
}
int getvalue(TSMatrix c,int i,int j)
{
    int k=0;
    while (k<c.nums && (c.data[k].r!=i || c.data[k].c!=j))
		k++;
    if (k<c.nums)
		return(c.data[k].d);
    else
		return(0);
}
bool MatMul(TSMatrix a,TSMatrix b,TSMatrix &c)
{
    int i,j,k,p=0;
	int s;
	if (a.cols!=b.rows)
		return false;
	for (i=0;i<a.rows;i++)
		for (j=0;j<b.cols;j++)
		{
            s=0;
            for (k=0;k<a.cols;k++)
				s=s+getvalue(a,i,k)*getvalue(b,k,j);
            if (s!=0)
            {
                c.data[p].r=i;
                c.data[p].c=j;
                c.data[p].d=s;
                p++;
            }
        }
	c.rows=a.rows;
	c.cols=b.cols;
	c.nums=p;
	return true;
}
int main()
{
	int a1[M][N]={{1,0,3,0},{0,1,0,0},{0,0,1,0},{0,0,1,1}};
	int b1[M][N]={{3,0,0,0},{0,4,0,0},{0,0,1,0},{0,0,0,2}};
	TSMatrix a,b,c;
	CreatMat(a,a1);
	CreatMat(b,b1);
	printf("a的三元组:\n");
	DispMat(a);
	printf("b的三元组:\n");
	DispMat(b);
	printf("a转置为c\n");
	TranTat(a,c);
	printf("c的三元组:\n");
	DispMat(c);
	printf("c=a+b\n");
	MatAdd(a,b,c);
	printf("c的三元组:\n");
	DispMat(c);
	printf("c=a×b\n");
	MatMul(a,b,c);
	printf("c的三元组:\n");
	DispMat(c);
	return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

数组和广义表的基本运算实现(三元组)

问题及代码: a:   b:  /* * Copyright (c) 2016, 烟台大学计算机与控制工程学院 * All rights reserved. * 文件名称:6-4.cpp * 作 ...

数据结构 - 数组和广义表的基本运算实现

实验题目:假设n n的稀疏矩阵A采用三元组表示,设计一个程序exp6-4.cpp实现如下功能: (1)生成如下两个稀疏矩阵的三元组a和b; (2)输出a转置矩阵的三元组; ...

实现广义表的各种基本运算算法

/*algo8-1.cpp*/ #include #include typedef char ElemType; typedef struct lnode {  int tag;/*结...

基本数据结构(数组、串、广义表)

数组 多维数组的概念与存储 二维数组也可叫做矩阵,它可以看作是由n个行向量和m个列向量所组成的向量,a[n][m],总共n*m个数组元素。 对于二维数组a[n][m],为能根据它的数组元素的下标得出在...
  • Linoi
  • Linoi
  • 2013-12-26 17:16
  • 1253

实现广义表求表头和表尾的运算

/*algo8-2.cpp*/ #include #include typedef char ElemType; typedef struct lnode {  int tag;/*结...

广义表的基本操作实现

广义表的四个特征:(1)广义线性表;(2)元素复合性;(3)元素递归性;(4)元素共享性     广义表的上述四个特征对于他的使用价值和应用效果起到了很大的作用。广义表的结构相当灵活,它可以兼容线性...

广义表的基本实现

广义表是线性表的一种推广。下边通过几个例子说明一下广义表: A=(),A是一个空表,长度为0,深度为0. B=(m),B中只有一个元素m,长度为1,深度为1. C=(a,(b,c),d)有4个元...

数组与广义表

  • 2014-12-15 12:21
  • 682KB
  • 下载

数组和广义表

  • 2015-05-11 23:16
  • 324KB
  • 下载

数据结构--数组和广义表--数组的顺序存储表示和实现

数组类似于串的定长顺序存储,数组中所有的数据元素都必须是同一类型,每个数据元素都对应唯一的一组下标(j1,j2...jn),每个下标的取值范围是 0<=ji<=(bi-1),bi称为第i维的长度(i=...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)