陶哲轩实分析 3.4

陶哲轩实分析 3.4

3.4.1

V f1 的象为 M
V f 的逆象为 N

证明 M=N 相当于证明 MN,NM

根据定义:
M={f1(y):yV}
N={xX:f(x)V}

xnN , 设 yn=f(xn)
f1 的定义可知 f1(yn)=xn 并且有 ynV
所以 xnM
所以 NM

xmM ,由 M 的定义可知,ymV 满足 f1(ym)=xm
f1 的定义可知 f(xm)=ymV
所以 xmN
所以 MN
所以 M=N

3.4.2

f(S)=U={f(x):xS}
f1(f(S))=f1(U)={xX:f(x)U}
xS xX f(x)U
所以有 f1(f(S))S

U Y的子集。
S=f1(U)
S=f1(U)={xX:f(x)U}
也就是说 xS f(x)U
f(f1(U))=f(S)={f(x):xS}
yf(f1(U)) y{f(x):xS}
因为前面已知: xS f(x)U
所以 yU
所以 f(f1(U))U

3.4.3

  1. 证明 f(AB)f(A)f(B)
    f(AB)f(A)
    f(AB)f(B)
    所以:
    f(AB)f(A)f(B)

  2. 证明 f(A)f(B)f(AB)
    f(A)f(B)={xf(A):xf(B)}

    y0f(A)f(B) 都存在一个对应的 x0A 满足 y0=f(x0)
    同时这个 x0B ,否则 f(x0)f(B) y0f(A)f(B) 矛盾。
    所以这个 y0{f(x):xAB}=f(AB)
    所以 f(A)f(B)f(AB)

  3. 证明 f(AB)=f(A)f(B)

    y0f(AB) 都存在一个对应的 x0AB 满足 f(x0)=y0
    所以 x0A 或者 x0B ,所以 y0f(A) 或者 y0f(B)
    所以 y0f(A)f(B)
    所以 f(AB)f(A)f(B)
    y0f(A)f(B) ,那么 y0f(A) y0f(B)
    所以存在一个对应的 x0 满足 y0=f(x0) 并且 x0A 或者 x0B
    所以 x0AB
    所以 y0f(AB)
    所以 f(A)f(B)f(AB)
    所以 f(A)f(B)=f(AB)

3.4.4

  1. 证明 f1(UV)=f1(U)f1(V)
    f1(UV)={xX:f(x)UV}
    所以 x0f1(UV) f(x0)UV ,所以 f(x0)U 或者 f(x0)V
    所以 x0f1(U)f1(V)
    所以 f1(UV)f1(U)f1(V)
    x0f1(U)f1(V) x0f1(U) 或者 x0f1(V)
    所以 f(x0)U 或则 f(x0)V
    所以 f(x0)UV
    所以 x0f1(UV)
    所以 f1(U)f1(V)f1(UV)
    所以 f1(UV)=f1(U)f1(V)
  2. 证明 f1(UV)=f1(U)f1(V)
    x0f1(UV) f(x0)UV
    所以 f(x0)U 同时 f(x0)V
    所以 x0f1(U) 同时 x0f1(V)
    所以 x0f1(U)f1(V)
    所以 f1(UV)f1(U)f1(V)
    x0f1(U)f1(V) f(x0)U 同时 f(x0)V
    所以 f(x0)UV
    所以 x0f1(UV)

  3. 证明 f1(UV)=f1(U)f1(V)
    x0f1(UV) f(x0)UV
    所以 f(x0)U 同时 f(x0)V
    所以 x0f1(U) 同时 x0f1(V)
    所以 x0f1(U)f1(V)
    所以 f1(UV)f1(U)f1(V)
    x0f1(U)f1(V) ,We have x0f1(U) and x0f1(V)
    so f(x0)U and f(x0)V
    then f(x0)UV
    then x0f1(UV)
    所以 f1(UV)=f1(U)f1(V)

3.4.5

f:XY ,证明 f(f1(S))=S 对每一个 SY 都成立的充分必要条件是 f 是满射。
先证明充分性:f(f1(S))=S 对每一个 SY 都成立可导出 f 是满射
反证法:假设 f 不是 XY 的满射,也就是至少存在一个 y0Y , xX 都有 f(x)y0
那么构造一个 S={y0} , 显然 f(f1(S))S
所以 f(f1(S))=S 对每一个 SY 都成立可导出 f 是满射
再证明必要性: f 是满射可导出 f(f1(S))=S 对每一个 SY 都成立。
U=f1(S)={xX:f(x)S} , f(U)={f(x):xU}
所以 f(U)S
因为 f 是满射,所以对任意的 y0S 都能找到一个 x0X 满足 f(x0)=y0
U 的定义可知, x0U, 所以 y0F(U)
所以 Sf(f1(S))
所以 S=f(f1(S)) 对每一个 SY 都成立。

3.4.6

证明引理 3.4.9: 设 X 是集合,那么集合 {Y:YX} 是一个集合
A={0,1} 那么 AX 是一个集合.
这个 集合的每一个元素 f X 的一个子集映射到 1. 也就是说 f1(1) X 的子集. 所以 {f1(1),fAX} 是一个集合.

3.4.7

XY 是集合,定义一个部分函数: f:XY , 证明全体部分函数构成一个集合.

全体 Y 构成了一个集合 2Y , 全体 X 构成了一个集合 2X
x02X,y2Y , 那么 从 x0 y0 的全体函数可以构成一个集合 yx0 .
那么固定 x0 ,由并公理可以构造一个集合 Ax0={yx0:yY}
再次运用并公理,可以构造一个集合 {Ax0:x0X}
这个集合就是全体部分函数构成的集合.

3.4.8

证明双并公理可以由单双元素集公理和并公理推导出来.
给定任何两个集合 A B. 由单双元素集公理可知存在一个集合 C={A,B}
由并公理可知存在一个集合 C , 元素x满足 xA or xB

3.4.9

证明 {xAβ:αI,xAα}={xAβ:αI,xAα}
x0{xAβ:αI,xAα} x0Aβ 同时, αI,x0Aα
所以 x0{xAβ:αI,xAα}

同理 x0{xAβ:αI,xAα} x0{xAβ:αI,xAα}
所以 {xAβ:αI,xAα}={xAβ:αI,xAα}

  • 7
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值