关闭

OpenCV2学习笔记(十一):特征点检测之FAST算法

标签: qtopencvFASTc++特征检测
3052人阅读 评论(0) 收藏 举报
分类:

在上一节中,记录了Harris算子检测图像特征点的定义和基于OpenCV的实现方法,它基于两个正交方向上的强度变化率。本节记录另一种特征点检测算子FAST(Features from Accelerated Segment Test),它依赖少数像素的比较来确定是否接受一个特征点,其检测效率要好于Harris。

与Harris算法相同,FAST特征算法需要定义什么是特征点。这次的定义基于假定特征点周围的图像强度,通过检查候选像素的周围一圈像素来决定是否接受这一个特征点。与中心点差异较大的像素如果组成连续的圆弧,并且弧长大于圆周长的3/4,则可判断为特征点。

在此基础上,算法还使用了额外的技巧进行加速。首先测试一个圆圈上被90度分隔的四个点(如顶部、底部,左侧和右侧四个点),如果要满足FAST的定义条件,四个点中至少要有三个点必须同时大于或小于中心像素。如果条件不成立,则该点可以直接被移除而不需要进一步的验证。在实践中,大部分的像素点可以通过这个测试进行移除,因此该算法非常高效。

和Harris方法相同的是,可以在找到的角点上执行非极大值抑制,因此需要指定角点强度的测量方法。

这里可以使用OpenCV 2的通用接口来创建任意的特征检测器,比如FAST检测器的使用方法如下:

    // 创建特征点的向量
    std::vector<cv::KeyPoint>keypoints;
    // 构造FAST特征检测器
    cv::FastFeatureDetector fast(75);
    // 进行检测
    fast.detect(image, keypoints);

同时,为了方便标记特征点,OpenCV提供了通用的特征点绘制函数cv::drawKeypoints,其调用方法如下:

    // 通用的特征点绘制函数
    cv::drawKeypoints(image, // 输入图像
                      keypoints, // 特征点向量
                      image, // 输出图像
                      cv::Scalar(255,255,255), // 特征点颜色
                      cv::DrawMatchesFlags::DRAW_OVER_OUTIMG); // 绘制标记

通过指定选中的绘制标记,可以看到输出图像中特征点均得到了绘制:

这里写图片描述

完整的实现代码如下,只需修改main函数:

#include <QCoreApplication>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/features2d/features2d.hpp>

int main(int argc, char *argv[])
{
    QCoreApplication a(argc, argv);

    // 输入图像
    cv::Mat image = cv::imread("c:/031.jpg", 0);
    cv::namedWindow("Original Image");
    cv::imshow("Original Image", image);
    // 特征点的向量
    std::vector<cv::KeyPoint>keypoints;
    // 构造FAST特征检测器
    cv::FastFeatureDetector fast(75);
    // 进行检测
    fast.detect(image, keypoints);

    // 通用的特征点绘制函数
    cv::drawKeypoints(image, // 输入图像
                      keypoints, // 特征点向量
                      image, // 输出图像
                      cv::Scalar(255, 255, 255), // 特征点颜色
                      cv::DrawMatchesFlags::DRAW_OVER_OUTIMG); // 绘制标记

    cv::namedWindow("Fast Feature");
    cv::imshow("Fast Feature", image);

    return a.exec();
}

FAST算法可以获得非常快速的特征点检测,在需要考虑运行速度的时候可以选用,比如在高帧率的视频序列中进行视觉跟踪。

关于FAST特征算法的详细描述,可参考以下论文:

The article by E.Rosten, T.Drummond, Machine Learning for High-speed Corner Detection, In European Conference on Computer Vision, pp.430-443, 2006

9
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:666839次
    • 积分:9980
    • 等级:
    • 排名:第1860名
    • 原创:249篇
    • 转载:6篇
    • 译文:2篇
    • 评论:280条
    博客专栏
    最新评论