BASE64编码

转载 2012年03月21日 11:22:54

1.为什么要用到BASE64编码的图片信息

Base64是网络上最常见的用于传输8Bit字节代码的编码方式之一。Base64主要不是加密,它主要的用途是把一些二进制数转成普通字符用于网络传输。由于一些二进制字符在传输协议中属于控制字符,不能直接传送需要转换一下。最常见的用途是作为电子邮件或WebService附件的传输编码.

2.base64编码定义

目前的internet e-mail标准–简单邮件传递协议(smtp)在rfc821中规定了两条重要但不难实现的限制:

1)  邮件的内容必须全部为7-比特的美国ascii码。

2)  每一行的长度不能超过1000的字符。

因此为了通过smtp用e-mail进行传送,内存的序列化对象必须转化为和以上相容的格式。

rfc1521提供了一个可行的方案。它定义了邮件的内容部分,使之能包涵多种形式的数据。这种标准就是目前众所周知的mime。

按照rfc1521编码过程为:输入是24个比特,输出是4个字节。24个比特输入组从左至右 由3个8比特的输入组形成。这24个比特被看成4个连续的6比特组,而每个6比特输入组被翻译为base64码表中的一个数字。依次反复不断进行,直到全 部输入数据转换完成。

如果最后剩下两个输入数据,在编码结果后加1个“=”;如果最后剩下一个输入数据,编码结果后加2个“=”;如果没有剩下任何数据,就什么都不要加,这样 才可以保证资料还原的正确性。

完整的base64定义可见 RFC1421和 RFC2045。编码后的数据比原始数据略长,为原来的4/3。在电子邮件中,根据RFC822规定,每76个字符,还需要加上一个回车换行。可以估算编 码后数据长度大约为原长的135.1%。

3.如何进行base64编码

Base64 使用US-ASCII子集的65个字符, 每个字符用6位表示

对于文本串,编码过程如下。例如"men":

先转成US-ASCII值.

"m"十进制 109

"e"十进制 101

"n"十进制 110

二进制 :

m 01101101

e 01100101

n 01101110

三个8位连起来是24位

011011010110010101101110

然后分成4个6位

011011 010110 010101 101110

现在得到4个值,十进制为

27 22 21 46

对应的 Base64 字符是 : b W V u

编码总是基于3个字符,从而产生4个Base64字符。

如果只是2个字符的数据,使用特殊字符"="补齐Base64的4字。

如,编码"me"

01101101 01100101

0110110101100101

011011 010110 0101

111111 (与,补足6位)

011011 010110 010100

b W U

b W U = ("=" 补足4字符)

于是 "bWU=" 就是"me"的Base64值.

如果只是1个字符的数据,如编码 "m"

01101101

011011 01

111111

011011 010000

b Q = =

于是 "bQ==" 就是"m"的Base64值.

相关文章推荐

Base64编码实例详解

  • 2016-06-26 00:28
  • 32KB
  • 下载

base64编码、解码

base64编码: // base64编码 + (NSString*) base64Encode:(NSData *)data { static char base64EncodingTab...

Base64编码解码工具V1.5

  • 2015-09-11 15:37
  • 138KB
  • 下载

Base64编码解码

java或jsp中把图片转成Base64编码在转成新的图片

import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.IOException; import ...

Base64编码解码器

  • 2014-11-06 15:38
  • 136KB
  • 下载

Base64编码

  • 2014-09-23 09:52
  • 10KB
  • 下载

Base64编码、解码的实现

Base64编码、解码的实现 encodingbytenull网络服务器table ////////////////////////////////////////////////////...
  • yi412
  • yi412
  • 2014-05-16 17:19
  • 479

base64编码

  • 2014-03-26 17:07
  • 295KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)