有 N 个小孩站成一列。每个小孩有一个评级。
按照以下要求,给小孩分糖果:
-
每个小孩至少得到一颗糖果。
-
评级越高的小孩可以得到更多的糖果。
需最少准备多少糖果?
样例
标签
Expand
给定评级 = [1, 2]
, 返回 3
.
给定评级 = [1, 1, 1]
, 返回 3
.
给定评级 = [1, 2, 2]
, 返回 4
. ([1,2,1]).
分析:其实题目描述的有点问题,不是评级越高的小孩可以得到更多的糖果,从第三个样例中可以看出来,应该是“相邻两人里评级高的,可以得到更多的糖果”,一开始可以假设每个小孩都1颗糖果,如果第i个小孩比i-1个小孩rating高,那么糖果数也得比他高,和i+1个小孩比也是这样,于是可以从前往后扫描一遍,再从后往前扫描一遍。
class Solution {
public:
int candy(vector<int>& ratings) {
vector<int> dp(ratings.size(),1);
for(int i=0;i<ratings.size()-1;i++)
if(ratings[i]<ratings[i+1])
dp[i+1] = max(dp[i+1],dp[i]+1);
for(int i=ratings.size()-1;i>=1;i--)
if(ratings[i]<ratings[i-1])
dp[i-1] = max(dp[i-1],dp[i]+1);
return accumulate(dp.begin(),dp.end(),0);
}
};